Supplementary Figure 1

Supplementary Figure 1: PhylCRM scoring scheme for a single motif (a) g represents the sequence being searched for CRMs and a^1 and a^2 are sequences from another organism aligned to it. L represents the length of the sequence, H_{0} , =g, H_{i} , = $a^{(i)}$, and H_{i} denotes the alignment column at position j. (**b**) Tree indicating the phylogeny of g, a^1 , and a^2 . (**c**) Scoring motif matches using the MEHB model. Here, the probability that a given nucleotide *a* turns into b during time t is given by a matrix exponential, for a suitably chosen rate-matrix R. This probability is then used to compute the probability of observing the set of nucleotides $H_{\bullet,i}$ under both the MEHB rate-matrix and the neutral matrix. The score of the motif ϕ is then taken to be the log-likelihood of the ratio of these probabilities. (d) Graphical image of scores for a motif M along g, where the height of the bars is ω/m . These scores are stored in an array ξ and the score of a window w_i (represented by $\Xi(w_i)$) is then given by summing ξ in w_i . (e) When there is no alignable sequence at a given position (or if there is no motif match there), the branch containing that sequence is removed and the pruned tree is used to compute φ .