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ABSTRACT 
Motivation: Recognition of specific DNA sequences is a central 
mechanism by which transcription factors (TFs) control gene ex-
pression.  Many TF binding preferences, however, are unknown or 
poorly characterized, in part due to the difficulty associated with 
determining their specificity experimentally, and an incomplete un-
derstanding of the mechanisms governing sequence specificity.  
New techniques that estimate the affinity of TFs to all possible k-
mers provide a new opportunity to study DNA-protein interaction 
mechanisms, and may facilitate inference of binding preferences for 
members of a given TF family when such information is available for 
other family members. 
Results: We employed a new data set consisting of the relative 
preferences of mouse homeodomains for all 8-base DNA sequences 
in order to ask how well we can predict the binding profiles of ho-
meodomains when given only their protein sequences.  We eva-
luated a panel of standard statistical inference techniques, as well 
as variations of the protein features considered.  Nearest-neighbour 
among functionally-important residues emerged among the most 
effective methods.  Our results underscore the complexity of TF-
DNA recognition, and suggest a rational approach for future analys-
es of TF families. 

1 INTRODUCTION  
Most TFs can be grouped into families of shared conserved DNA-
binding structures that are usually identified by common ancestry 
inferred from sequence homology (Papavassiliou, 1995).  Despite 
the sequence conservation within TF families, individual proteins 
within the same DNA-binding domain (DBD) family can have 
radically different DNA-binding specificities (Ekker, et al., 1994).  
Since the preferred binding sequences within a family can often be 
changed by mutating only a single DNA-contacting amino acid 
residue (Damante, et al., 1996), it has been proposed that a recog-
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nition code might exist in which affinity to each base in a TF bind-
ing site is governed by either additive or combinatorial rules that 
pair the identities of amino acids at DNA-contacting positions with 
relative preferences for each of the four DNA bases at each posi-
tion of the binding site.  Conflicting with this view, however, are 
observations that changes in DBD sequence can alter the arrange-
ment of DNA-contacting residues in ways that seem to be inconsis-
tent with a simple recognition code (Miller, et al., 2003; Pabo and 
Nekludova, 2000).  In addition, study of the DNA-binding speci-
ficities of TFs typically employs a position weight matrix (PWM) 
(Stormo, 2000), and the assumptions of PWMs, such as indepen-
dence of base positions, do not fit all of the biochemical data (Be-
nos, et al., 2002). 

Several high-throughput, unbiased, and semi-quantitative me-
thods for the assessment of TF sequence preferences have been 
developed, including protein-binding microarrays (PBM) (Mukher-
jee, et al., 2004), DNA immunoprecipitation microarrays (DIP-
chip) (Liu, et al., 2005), and cognate site identifier microarrays 
(CSI) (Warren, et al., 2006).  The data sets associated with these 
methods provide an opportunity to examine protein-DNA interac-
tions at previously unprecedented resolution and scale.  Here, we 
present an evaluation of how well a panel of inference algorithms 
can predict TF DNA-binding specificity data derived from PBM 
experiments, in an effort to gain deeper insight into the mechan-
isms governing the specificity of protein-DNA interactions, and 
also to identify a means to project binding preferences to proteins 
without known binding preferences.  We focus on the homeodo-
main family, because it is large and diverse, and the vast majority 
of homeodomain-containing proteins have only a single homeo-
domain.  Homeodomains are also one of the most well-studied 
DBDs, both structurally and biochemically, such that the DNA-
contacting residues are known (Kissinger, et al., 1990) and several 
residues that can alter sequence specificity have been identified 
(Ades and Sauer, 1994; Ekker, et al., 1994; Hanes and Brent, 
1989).  We find that a nearest-neighbour approach using TF pro-
tein sequences is at least as effective as more sophisticated tech-
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niques.  This finding has implications for the mechanics of DNA-
binding, and for future study of TF-DNA interactions. 

2 METHODS 

2.1 Dataset 
The Z-score transformed relative signal intensities for 168 homeodomains 
across all 32,896 8-mer DNA sequences were obtained using PBMs (Berg-
er, et al., 2008).  Given that methods that overfit the data may give good 
results in a leave-one-out cross-validation scheme (see below) if a high 
portion of the data has at least one nearly identical example, we reduced the 
dataset to 75 homeodomains unique at the 15 amino acid positions de-
scribed as making contact with DNA in the Engrailed crystal structure 
(Table 1).  A multiple sequence alignment of the 75 homeodomains was 
obtained by downloading the primary homeodomain family alignment from 
Pfam-A (Bateman, et al., 2004) (Accession number PF00046) and extract-
ing the pertinent sequences.  From the resulting sequence alignment, three 
subset sequence alignments were derived for purposes of feature selection: 
all 57 residues of the Pfam alignment (positions 2 to 58 of the Engrailed 
homeodomain), 15 residues described by Kissinger et al. as making direct 
contact with DNA in the Engrailed homeodomain crystal structure (Kissin-
ger, et al., 1990) (positions 3, 5, 6, 25, 31, 44, 46, 47, 48, 50, 51, 53, 54, 55, 
and 57), and six residues described as determinants of sequence specificity 
in the literature (Ekker, et al., 1994; Laughon, 1991) (positions 3, 6, 7, 47, 
50, and 54). 

2.1.1  Numerical encoding   All implementations of the compared me-
thods, except Nearest Neighbour (NN), required numerical inputs.  We 
converted the 6-, 15-, and 57-position sequence alignments to numerical 
encodings representing amino acid sequences of length l as binary vectors 
of length l x 20 digits, i.e. the 20 different amino acids were encoded as 
orthogonal 20 digit vectors and an amino acid sequence was represented by 
concatenating the binary vectors corresponding to residues at each position.  
Gaps were encoded as a vector of 20 zeros.  Insertions were not considered 
in this analysis. 

2.2 Machine learning algorithms 
Let ࢞ଵ, ,ଶ࢞ … ,   be the set of ݉-residue sequence alignments from the࢞
dataset described above, where ݉ ൌ 6, 15, or 57, and for a given 8-mer out 
of the ݐ total exemplar 8-mers, let ࢟ be the Z-scores for the ݅-th protein 
with respect to that 8-mer.  We defined the problem of predicting homeo-
domain Z-scores for a particular 8-mer as the estimation of the function 
݂: ߯ ՜ Թ trained using the ݊ data pairs (x1, y1),…,(xn, yn) א ߯ ൈ Թ, such 
that ݂ሺ࢞ሻ is approximately equal to ࢟ and ݂ correctly generalizes to most 
unseen examples; therefore the problem of predicting homeodomain 8-mer 
Z-score profiles across all 8-mers was defined as predicting all ݐ such func-
tions.  In this case, ߯ was the set of sequences {A, R, N, D, C, E, Q, G, H, 
I, L, K, M, F, P, S, T, W, Y, V, –ሽ, where “–“ represents a sequence 
alignment gap.  We formalized both definitions as multiple regression 
problems in which the ࢞ were considered as ݊ observations on ݉ predictor 
variables and the ࢟ were considered as ݊ observations on a response varia-
ble, and accordingly, compared a number of regression techniques from 
machine learning and statistics (outlined below) for the purpose of quantita-
tively modeling the relationships between these variables.  

2.2.1 Nearest Neighbour Assume that ݔ is the length ݉ amino acid 
sequence alignment of an unseen protein.  In order to predict the 8-mer 
profile of ݔ, our implementation of the NN algorithm calculates a vector ሬ݊റ 
of distances, where each element ሬ݊റ represents the distance ݀ሺ࢞, -ሻ beݔ
tween protein ݔ and ࢞ (݅ א ሼ1,… , ݊ሽ).  We defined the distance between  

Table 1.   List of 75 mouse homeodomains unique at 15 AA positions that 
contact DNA 

Alx3 Dobox4 Hlxb9 Hoxc12 Lhx6 Pax4 Rhox6 
Bapx1 Dobox5 Hmbox1 Hoxc8 Meis1 Pax6 Six1 
Barhl1 Duxl Hmx1 Ipf1 Meox1 Pax7 Six3 
Barx1 Emx2 Hmx2 Irx2 Msx1 Pbx1 Six4 
Bsx En1 Homez Irx3 Nkx1-1 Pitx1 Tcf1 
Cdx1 Esx1 Hoxa1 Isl2 Nkx2-2 Pknox1 Tcf2 
Cphx Evx1 Hoxa10 Isx Nkx6-1 Pou1f1 Tgif1 
Crx Gsc Hoxa13 Lbx2 Obox1 Pou2f1 Tgif2 
Cutl1 Gsh2 Hoxa2 Lhx1 Obox6 Pou4f3 Tlx2 
Dbx1 Hdx Hoxa6 Lhx2 Og2x Pou6f1  
Dlx1 Hlx1 Hoxb13 Lhx3 Otp Rhox11  

two proteins as the proportion of non-identities across all ݉ positions.  We 
also tested distances based on the PAM250 matrix, but the results were 
inferior (Berger, et al., 2008).  Using ሬ݊റ, the algorithm then finds the nearest 
neighbours of ݔ by computing the set ሼ ࢞ |݀ሺ࢞, ሻݔ ൌ ݉݅݊ሺሬ݊റሻሽ.  Finally, 
for all 8 ݐ-mers, the algorithm calculates the Z-score of each 8-mer as the 
mean of the Z-scores for that 8-mer across all of the nearest neighbours. 

2.2.2  Random Forests Regression  We used the R randomForest pack-
age, which serves as an interface to the original random forests (RF) For-
tran code developed by Breiman and Cutler (available at 
http://www.stat.berkeley.edu/~breiman/RandomForests.  To predict the 8-
mer profile of an unseen protein ݔ, we generated ݐ random forests, by using 
the set of ݊ observations on ݉ predictors ࢞, the response variable ࢟ for a 
given 8-mer, and default parameters.  We then used this collection of ran-
dom forests to predict the Z-scores across all 8-mers for the sequence ݔ. 

2.2.3 Support Vector Regression We used the LIBSVM package devel-
oped by Chih-Chung Chang and Chih-Jen Lin (available at 
http://www.csie.ntu.edu.tw/~cjlin/libsvm/) to construct SVMs for every 
exemplar 8-mer.  For each 8-mer, three SVMs were constructed, each using 
a different kernel: the linear kernel (SVM_L), 

݇ሺݔ, ሻ´ݔ ൌ ,ݔۃ  ,ۄ´ݔ

the polynomial kernel (SVM_P), 

݇ሺݔ, ሻ´ݔ ൌ ,ݔۃ  ,ௗۄ´ݔ

or the radial basis function kernel (SVM_R), 

݇ሺݔ, ሻ´ݔ ൌ ݔԡߛሺെ ݔ݁ െ  ,ԡଶሻ´ݔ

where ݀ א Գ, ݔ ,0 < ߛ and ݔ´ are alignment encodings, and ݔۃ,  refers to ۄ´ݔ
the inner product.  All parameters were left at default setting with the fol-
lowing exceptions.  For SVM_L, we tried all parameter pairs [ܥ ,ߝ]={ ܥ ,ߝ | 
-where ε is the epsilon-SVM precision parame ,{23 ≥ ܥ ≥ 2-15 ,4.8 ≥ ߝ ≥ 0.1
ter, which was varied in steps of 0.8, and ܥ is the SVM error penalty para-
meter.  For SVM_P, we tried all parameter pairs [݀, ܥ]={ ݀, 6 ≥ ݀ ≥ 1 | ܥ, 
 where ݀ was varied in steps of 1.  For SVM_R, we tried all ,{23 ≥ ܥ ≥ 2-15
parameter pairs [ܥ ,ߛ]={ 23 ≥ ܥ ≥ 2-15 ,23 ≥ ߛ ≥ 15-2 | ܥ ,ߛ}, where ߛ was 
varied by a factor of 22.  In all cases, ܥ was varied by a factor of 22 and the 
best parameter pair was chosen using five-fold cross-validation. 

2.2.4 Principal Components Regression As the encoding strategy 
that we used produces a much larger number of variables relative to the 
number of samples (rank deficiency) as well as a large number of corre-
lated variables (multicollinearity), both of which are problematic for linear 
regression, we used Principal Components Regression (PCR) to simulta-
neously reduce the dimensionality of the encodings and remove the correla-
tion between variables.  PCR was carried out by first applying principal  
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Fig. 1.   2-D clustergram of Z-scores for 2,042 8-mers and 75 mouse homeodomains, as observed in either real PBM data (left) or nearest mneighbour pre-
dictions (right), with some of the established classes of homeodomains labeled.  Nearest neighbour predictions were made using 6 AA positions and leave-
one-out cross-validation.  The 2,042 8-mers were selected because they comprise the top 100 8-mers by Z-score over the DNA-binding domains shown. 

 
components analysis to the encodings.  The number of principal compo-
nents retained  was selected using Parallel Analysis (PA) with 1000 shuf-
fles, which is essentially a permutation test that asks whether the ܰ-th 
principal component explains more of the variance than the ܰ-th principal 
component would in a permuted version of the same data (reviewed in 
reference Franklin, et al., 1995).  On the basis of PA, we retained 6, 12, and 
19 principal components for the 6-, 15-, and 57-position alignments, re-
spectively.  For each 8-mer, we then built a regression model using an 
approach similar to five-fold cross-validation, described as follows: 

(1) Randomly partition the sample set into five subsamples. 
(2) Retain one subsample as the validation set and aggregate the re-

maining ݇ ൌ4 subsamples into a matrix of training data, ݐ 
(݅ א ሼ1,… , ݇ሽ, ݆ א ሼ1,… ,  .(ሽ

(3) So that the intercept in the regression model will always be esti-
mated by ݕത (Montgomery and Runger, 2007), centre and transform 
the training data into a new set of variables as: 

ݔ ൌ
௧ೕష௧ೕ
ඥௌೕೕ

, 

where ܵ ൌ ∑ ሺݐ െ ሻଶݐ
ୀଵ . 

(4) Compute the ordinary least squares coefficients for the transformed 
training data and calculate the mean squared error (MSE) of the 
coefficients using the validation set. 

(5) Go back to Step 2 until all subsamples have been used as the vali-
dation set and retain the coefficients with the lowest MSE. 

(6) Repeat steps 1 to 5 three times. 

3 RESULTS 

3.1 Comparison of linear and non-linear inference 
methods 

We attempted to learn the Z-score transformed signal intensities 
for mouse homeodomain DBDs for all 32,896 non-redundant 8-
base DNA sequences using PBM experiments (Berger, et al., 
2008).  We learned the Z-scores rather than PWMs because Z-
scores reflect binding affinity (Berger, et al., 2006), whereas 
PWMs often fail to capture detailed binding activity (Benos, et al., 
2002; Chen, et al., 2007) and cannot be aligned with confidence for 

many homeodomains (Berger, et al., 2008), complicating direct 
comparisons.  To avoid overfitting, we considered a 75-
homeodomain subset in which each protein is unique at the 15 
amino acid positions described as making contact with DNA in the 
Engrailed crystal structure (Kissinger, et al., 1990) (Table 1), as we 
have previously shown that a perfect match at all 15 amino acids 
yields data comparable to experimental replicates of a single ho-
meodomain (Berger, et al., 2008).  All original datasets and sup-
plementary data can be downloaded from 
http://hugheslab.ccbr.utoronto.ca/supplementary-
data/profile_prediction/. 

We assessed the performance of a panel of inference algorithms 
by a leave-one-out cross-validation approach, in which each of the 
75 homeodomains was held out from the training set in turn and 
the remaining proteins were used as training data to predict the Z-
score profile of the held-out protein, given its amino acid sequence.  
We used regression to create linear models via Principal Compo-
nents Regression (PCR) and linear kernel Support Vector Regres-
sion (SVM_L).  To create models in which interactions between 
TF sequence features can be captured, reflecting "combinatorial 
recognition codes" (Damante, et al., 1996), we also used Support 
Vector Regression with a polynomial kernel (SVM_P), or radial 
basis function kernel (SVM_R), Random Forests (RF) (Breiman, 
2001) and a nearest-neighbour (NN) approach in which the profile 
of a held out protein was predicted as the averaged profiles of its 
nearest (fewest mismatches) sequence neighbour(s) in the training 
set.  With the exception of the NN method, amino acid sequences 
of length l were numerically represented as binary vectors of 
length l x 20 digits, i.e. the 20 different amino acids were encoded 
as orthogonal 20 digit vectors and each protein sequence was 
represented by concatenating the binary vectors corresponding to 
residues at each position. 

In each of these analyses we also considered three sets of fea-
tures: (i) the full 57 amino acid homeodomain (omitting inser-
tions), (ii) the subset of 15 amino acids that contact the DNA in the 
Engrailed structure (positions 3, 5, 6, 25, 31, 44, 46, 47, 48, 50, 51, 
53, 54, 55, and 57) (Kissinger, et al., 1990), and (iii) six amino 
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Table 2.  Leave-one-out cross-validation measures for 8-mer Z-score profile prediction algorithms on 32,896 8-mers for 75 homeodomains 

Approach Residues 
Top100-overlap 

(predicted vs real) 

Top100-
overlap 
(control) 

No. of proteins 
with top-100 
overlap < 50 

RMSE (predicted 
vs real) 

RMSE 
(control) 

Spearman (pre-
dicted vs real) 

Spearman  
(control) 

Median rank 
(Mean rank) 

median mean median mean median mean 
replicates N/A 86 82.84 80 0 0.63 0.58 -0.49 0.83 0.84 0.16 N/A 

NN 15AA 66 58.60 61 18 0.72 0.76 -0.36 0.80 0.77 0.14 3.00 (7.20) 
NN 6AA 66 58.65 60 18 0.68 0.77 -0.38 0.82 0.78 0.14 3.50 (6.00) 
NN 57AA 69 58.07 62 18 0.75 0.82 -0.36 0.79 0.76 0.13 3.50 (9.00) 
NN top6 66 58.68 58 16 0.72 0.76 -0.35 0.81 0.78 0.13 5.00 (7.00) 
NN top15 69 57.00 63 19 0.75 0.80 -0.34 0.80 0.77 0.13 5.00 (8.70) 

SVM_R 6AA 63 55.99 46 23 0.66 0.70 -0.26 0.83 0.81 0.09 5.50 (6.50) 
RF 15AA 65 55.85 57 24 0.69 0.71 -0.25 0.83 0.81 0.12 6.00 (6.00) 
RF 6AA 63 55.17 54 25 0.71 0.72 -0.25 0.83 0.81 0.12 7.00 (7.70) 

SVM_R 57AA 60 51.51 41 28 0.69 0.73 -0.20 0.84 0.81 0.08 7.50 (9.70) 
SVM_L 15AA 62 52.40 55 28 0.68 0.73 -0.30 0.82 0.79 0.10 8.00 (9.00) 
SVM_R 15AA 63 55.28 50 21 0.66 0.71 -0.28 0.82 0.80 0.09 8.50 (7.40) 
SVM_L 57AA 67 55.32 53 23 0.70 0.73 -0.22 0.83 0.79 0.09 8.50 (8.70) 
SVM_L 6AA 62 54.51 52 28 0.68 0.73 -0.28 0.82 0.80 0.10 9.50 (8.40) 

PCR 6AA 63 54.05 54 25 0.75 0.82 -0.30 0.79 0.75 0.12 10.0 (11.9) 
PCR 15AA 63 53.45 55 29 0.72 0.77 -0.28 0.80 0.77 0.11 11.0 (11.0) 

SVM_P 15AA 48 41.11 18 39 0.71 0.76 -0.17 0.83 0.81 0.08 11.0 (12.10) 
RF 57AA 55 51.53 37 28 0.73 0.75 -0.16 0.84 0.81 0.08 12.0 (10.70) 

SVM_P 6AA 49 41.65 16 38 0.70 0.76 -0.17 0.83 0.81 0.07 12.0 (12.6) 
SVM_P 57AA 48 38.91 5 39 0.72 0.79 -0.12 0.84 0.80 0.06 15.0 (14.2) 

PCR 57AA 60 48.48 51 32 0.77 0.79 -0.19 0.81 0.77 0.09 15.5 (14.3) 

Algorithms are sorted in descending order of median rank across all columns, where ties are resolved using mean rank.  The first row shows the agreement between 19 experimen-
tal replicates and their corresponding true Z-score profiles as measured using protein-binding microarrays.  Columns labeled ‘predicted vs real’ show the mean or median perfor-
mance between each predicted profile and its true, measured Z-score profile.  Columns labeled ‘control’ show the difference between the median predicted vs real performance and 
the median of the performance between all pairs of predicted and actual profiles.  Cells in a given column are coloured according to their position in the range of that column.  
Rows labeled top6 and top15 represent the result obtained if we use the 6 and 15 most important amino acid positions according to the RF importance score on the 57AA set. 

 
acids that have been demonstrated to influence binding preferences 
(positions 3, 6, 7, 47, 50, and 54) (Ekker, et al., 1994; Laughon, 
1991) (referred to as 6AA, 15AA, and 57AA).  We did not consid-
er de novo feature selection as part of our training process because 
feature selection consumes statistical (i.e. training) power, and 
arbitrary feature selection is NP-hard in the general case (Garey 
and Johnson, 1979).  In Section 3.3 (below), we present evidence 
that residues scored highest by the RF importance score may be 
less predictive than literature-derived feature sets.   

3.2 Assessing the performance of inference methods 
The cross-validation results were assessed using three measures:  
(a) the number of top-100 8-mers in common, (b) Spearman corre-
lation over all 8-mers, and (c) overall RMSE (Root Mean Squared 
Error) values between the predicted and the actual Z-score profiles 
over all 8-mers.  As a summary statistic, we also counted the num-
ber of proteins with a top-100 overlap <50.  As a background con-
trol, we calculated the difference between the median of each me-
tric and the median of the performance of all predicted versus all 
actual profiles, since all homeodomain binding profiles correlate to 
a degree.  Results are tallied in Table 2, which is sorted from best 
to worst median rank across all of the criteria.  Included in Table 2 
is the agreement between 19 experimental replicates as a reference 
for the reproducibility of the assay itself (Berger, et al., 2008) In 
these replicates, 19 different homeodomains were each analyzed in 
duplicate, and the numbers reported refer to 19 pairwise compari-
sons.  Since the set of replicates contains some homeodomains not 
found in the 75 we analyzed, however, the performance values 
cannot be directly compared to those of the predictions. 

Three major conclusions can be drawn from this analysis.  First, 
results of all algorithms are clearly distinct from random (Table 2, 

columns 5, 9, and 12).  Second, the 15AA and 6AA subsets appear 
to provide a superior training set relative to the 57AA set.  Third, 
presumably due to the importance of non-linear interactions be-
tween amino acid positions in defining DNA-binding specificity, 
methods that can capture interactions and non-linearities have a 
clear advantage: there is almost always at least one variant of each 
non-linear method, i.e. NN, RF, and SVM_R, that outperforms 
every linear method we employed.  NN (Figure 1, right panel) in 
particular has a significantly higher mean top-100 overlap than 
PCR (95% confidence interval (C.I.) for difference, 3.92-109; 
Kruskal-Wallis test).  NN moreover often shows the greatest dif-
ference from random, and has the fewest number of predicted pro-
files with a top-100 overlap <50.  In three instances (Evx1, Irx2, 
and Lhx1), the 15AA NN-predicted Z-score profiles exhibit 
Spearman correlation, top-100 overlap, or RMSE values that ex-
ceed those of the experimental replicates for these proteins.  There-
fore, it appears that predicted Z-score profiles can, in specific cas-
es, rival experimental replicates in reproducing the Z-score profile 
of a given homeodomain.  Fig. 2 shows scatter plots of the Z-
scores for Evx1, Irx2, and Lhx1, comparing to the predicted and 
replicate Z-scores. 

3.3 De novo feature selection  
The feature sets we used were chosen on the basis of biochemical 
and genetic experiments to ask whether the use of this prior data to 
select features reduces generalization error. It is also of interest 
whether automated feature selection identifies the same residues, 
and whether automatically-selected features perform better than 
those selected using evidence from laboratory studies. Towards 
this end, we examined the “node purity” importance scores output 
by RF run with the full 57AA set. We summarized the importance 
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Fig. 2. Comparison of the accuracy of nearest-neighbour predictions versus 
experimental replicates. Scatterplots show the measured Z-scores for all 
32,896 non-redundant 8-base DNA sequences from one PBM versus a 
second PBM for the same DNA-binding domain (top) or versus the Z-score 
predicted using NN (6 AA variant; bottom). Median performance metrics 
are given. Evx1 has a single nearest-neighbour (Hoxa2); Irx2 has a single 
nearest-neighbour (Irx3); Lhx1 has two nearest neighbors (Alx3 and Lhx3). 

per residue for each of the 75 rounds of cross-validation by consi-
dering the median importance score for the 2,585 8-mers reported 
by Berger et al. to be bound in at least one experiment using the E 
> 0.45 criterion (see (Berger, et al., 2008)), reasoning that RF may 
be learning primarily noise for the remaining 8-mers.  A very simi-
lar set of importance scores emerged from each of the 75-rounds of 
cross-validation (Fig 3).  Considering the median importance score 
over all homeodomains over all 2,585 residues as a feature prioriti-
zation measure, we obtained the ranking of residues shown in Fig-
ure 3.  The top 15 AA emerging from this analysis are (in descend-
ing order) 50, 6, 46, 54, 7, 56, 14, 28, 4, 19, 43, 22, 29, 36, 37. 
These residues include only four among our 6AA set (6,7,50,54) 
and four among our 15AA set (6,46,50,54).  Thus, de novo feature 
selection identifies some, but not all, of the same residues as labor-
atory studies.  We found that the top-6 and top-15 residues selected 
by the RF importance score did not perform as well in NN (our 
best performing method) as did the original 6AA and 15AA sets 
(Table 2).  A possible explanation is that de novo feature selection 
is identifying residues that correlate with binding specificity, but 
without being causative; for example, residues that participate in 
functions of the homeodomains besides DNA-binding, those that 
are shared due to common evolutionary descent, and/or those that 
co-vary due to structural constraints (Clarke, 1995).  From these 
results, and the fact that the 6AA and 15AA sets generally provide 
better features (Table 2), we propose that use of experimental evi-
dence in the feature selection step can augment training power, by 
incorporating external information. 

3.4 Association between prediction difficulty and 
number of sequence mismatches 

In general, the 8-mer profiles that are difficult for one algorithm to 
predict are those that are difficult for other algorithms as well.  
Figure 4 compares the top-100 overlap for all 75 homeodomains 
for all prediction methods, using the 15AA feature set.  The co-
lours of the points reflect the NN distance.  There is a clear rela-

tionship between the 15AA distance and the top-100 overlap, with 
the ten proteins with the greatest distance consistently having over-
laps  <50, indicating that for all methods the difficulty of learning 
the 8-mer profile for a specific experiment is related to whether 
there is a similar example in the training set.  This trend also holds 
for other feature sets, and likely explains the success of NN, which 
does not incorporate any information from more distant profiles. 
 

4 DISCUSSION 
Our results show that the full DNA-binding specificity of uncha-
racterized TFs to individual k-mers can be predicted on the basis of 
similarity in protein sequence alone, given the sequence specificity 
of closely-related members of the same TF family, and (preferably) 
knowledge of the DNA-contacting residues.  Our results are likely 
to underestimate real-world accuracy because we only evaluated 
homeodomains that are unique at 15 DNA-contacting amino acids.  
The efficacy of NN makes predicting binding preferences simple 
to implement and consistent with intuition: it is typically assumed 
that similarity among functional residues reflects similar protein 
activity.  At least one previous study applied a nearest-neighbour 
strategy to the inference of PWMs (Qian, et al., 2007), but our NN 
implementation is more straightforward and provides relative af-
finity estimates for individual sequences: in contrast, the ap-
proached described by Qian et al. predicts the consensus motifs of 
TF binding sites from the TRANSFAC database using the InterPro 
annotations of the TF of interest and its target genes as training 
data (Qian, et al., 2007). 

Our results are consistent with the “combinatorial code” model 
of TF binding (Damante, et al., 1996; Suzuki, et al., 1995; Suzuki 
and Yagi, 1994).  In this model, the relative preference of a TF to 
individual bases in a given DNA sequence is determined by the 
aggregate identities of a subset of key amino acid residues.  In our 
regime, this model would translate into interaction terms among 
amino acid residues.  Indeed, in our analysis, methods capable of 
modeling interactions between amino acid positions, such as NN 
and Random Forests, appear to be best suited to predicting se-
quence preferences for TFs, or at least for homeodomains.  The 
fact that linear regression is one of the least effective methods 
among those tested further supports the importance of interaction 
terms; preferences to individual DNA sequences apparently cannot 
be taken as a linear combination of the contributions of each amino 
acid residue. 

In addition, the observation that incorporation of the full set of 
homeodomain residues adversely affects all success measures that 
were employed here, even using NN (which would not be subject 
to overfitting), is consistent with a model in which the remainder 
of the domain structure primarily plays a role as a scaffold, at least 
with regard to DNA-binding.  This is because such a role would 
provide flexibility in residue identities without impacting DNA 
sequence specificity. 

An important question is whether the outcome of our compari-
sons would be different with different feature sets, and whether our 
results could be improved with more sophisticated approaches.  
With regard to feature sets, even in a circular regime (selecting 
amino acids using the same data used to test them) we found no 
feature sets that offered a substantial improvement over the 6 and 
15 AA sets (Figure 3, Table 2, and data not shown), suggesting 
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 Fig. 3. Node purity importance scores for 57 homeodomain amino acid 
positions for 75 rounds of leave-one-out cross-validation, sorted by median 
(purple). 

that a single DNA-protein co-crystal structure constitutes a that a 
single DNA-protein co-crystal structure constitutes a powerful 
feature selection step, perhaps because it provides information that 
is not available to the algorithms used here. Nonetheless, it is poss-
ible that addition of an automated feature selection step might be 
advantageous, particularly if it is incorporated into the cross-
validation regime, i.e. if the feature selection is done separately at 
each LOO iteration, and/or if it is done in conjunction with feature 
selection based on experiments.  Due to the large number of per-
mutations, we did not explore such variations in this study, nor did 
we test every possible variation of the techniques represented.  For 
example, it has been reported that pruned decision trees usually 
perform better than unpruned trees; this was not an option in the 
RF implementation that we used but would be worth examining.  It 
may also be beneficial in the future to take advantage of similarity 
among k-mers.  In all of the analyses presented here, each k-mer is 
treated as a separate learning problem; however, there are relation-
ships among the k-mers in both sequence and affinity for individu-
al proteins. Exploration of these variations could shed light on the 
biology of DNA-binding in addition to improving prediction re-
sults.  We note, however, that there are also benefits associated 

with use of simple inference methods such as NN. While perform-
ing as well as other methods, NN is computationally much less 
intensive than any other method we tested – in our algorithm, NN 
is determined based on protein sequence alone, so the time com-
plexity of this part of the algorithm does not depend upon the 
number of k-mers.  Also, the success of NN on the full set of k-mer 
affinities suggests that our NN approach would also work well 
when the binding preferences of each TF were represented differ-
ently, e.g. as a PWM. 
   Another question is whether better results could be obtained 
using a training set that more completely samples possible homeo-
domain amino acid combinations.  With regard to sampling depth 
in the training set, the argument may be academic: the large num-
ber of possible combinations would be impractical to survey in the 
laboratory, and also appears to be sparsely-populated in nature 
(data not shown) (Berger, et al., 2008).  A more extensive PBM–
based survey of the binding preferences of naturally-occurring 
unique combinations among DNA-contacting residues might be 
the next step towards both theoretical and practical aims.  Such a 
survey would also help clarify the functional evolution of the dis-
tinct homeodomain subclasses.  One interpretation of the success 
of NN—coupled with the fact that all algorithms suffer considera-
bly when there is no similar homeodomain in the training set to 
serve as an example—is that homeodomain groups (described in 
Banerjee-Basu and Baxevanis, 2001, although the groups we ob-
tained are not always identical) each have distinct DNA-binding 
modes that cannot be inferred from examples in other groups.  
Consistent with this notion, there is a strong correspondence be-
tween 8-mer binding profiles and sequence groups obtained by 
ClustalW (data not shown).  In fact, we cannot rule out that RF 
and/or SVM_R are acting in essence as a more sophisticated ver-
sion of NN, by learning group memberships.  We have attempted 
to improve upon our current results using unsupervised sequence 
clustering approaches, but have not yet been able to improve upon 
the NN results (data  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.   Association between top-100 overlap scores for pairs of 8-mer 
profile inference methods.  Scatterplots show the top-100 overlap values 
for 75 homeodomains when Z-score profiles are predicted using one infe-
rence method versus another method for the same proteins.  All axes range 
from 0 to 100.  The names on the diagonal label the axes.  Predictions are 
made using the 15 homeodomain DNA-contacting residues.  Homeodo-
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mains are coloured according to whether they have ≥5 (red), 3-4 (blue), or 
1-2 (green) mismatches to their nearest sequence neighbor. 
not shown).  One explanation for this outcome may be that there 
are no ideal natural subdivisions within these groups; instead, there 
is variation on a theme within each group, and the variation in 
amino acid sequence bears a relationship to that seen in the 8-mer 
binding profiles.  If this is the case, then even better inference re-
sults might be obtained from a two-stage process in which group 
assignment is separated from k-mer profile prediction within a 
group. 

Finally, our preliminary results (data not shown) suggest that 
NN will be similarly applicable to other DBD classes.  Extension 
of the work presented here should allow future experimental stu-
dies of binding specificity to focus on proteins most likely to pos-
sess new DNA-binding activities, and will facilitate more accurate 
inference of DNA-binding data among proteins with related se-
quences. 
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