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ABSTRACT

Motivation: Sequence analysis algorithms are often applied to
sets of DNA, RNA or protein sequences to identify common or
distinguishing features. Controlling for sequence length variation
is critical to properly score sequence features and identify true
biological signals rather than length-dependent artifacts.
Results: Several cis-regulatory module discovery algorithms exhibit
a substantial dependence between DNA sequence score and
sequence length. Our newly developed LOESS method is flexible
in capturing diverse score-length relationships and is more effective
in correcting DNA sequence scores for length-dependent artifacts,
compared with four other approaches. Application of this method
to genes co-expressed during Drosophila melanogaster embryonic
mesoderm development or neural development scored by the
Lever motif analysis algorithm resulted in successful recovery of
their biologically validated cis-regulatory codes. The LOESS length-
correction method is broadly applicable, and may be useful not only
for more accurate inference of cis-regulatory codes, but also for
detection of other types of patterns in biological sequences.
Availability: Source code and compiled code are available from
http://thebrain.bwh.harvard.edu/LM_LOESS/
Contact: mlbulyk@receptor.med.harvard.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
An important task in computational biology is to score DNA, RNA
or protein sequences for a variety of features. These features may
range from relatively basic sequence properties such as GC content
or evolutionary conservation, to more complex measures of putative
biological function, such as the presence of transcription factor
binding sites (TFBSs) or of TFBS clusters organized into cis-
regulatory modules (CRMs), e.g. transcriptional enhancers (Frith
et al., 2003; Hallikas et al., 2006; Johansson et al., 2003; Kielbasa
et al., 2010; Sinha et al., 2003; Warner et al., 2008; Zhou and Wong,
2004). Such general computational endeavors often face the central
challenge of properly accounting for input sequences of varying
lengths.

∗To whom correspondence should be addressed.

Accounting properly for dependence between a sequence score
and its length is critical to identify a true biological signal, rather
than a correlation artifact. A greater sequence length offers greater
opportunities for finding good local matches by chance alone. For
instance, artifacts associated with length dependence were noted
in the early days of searching sequence databases. A nearly linear
correlation was often observed between the best local similarity
score and the length of the sequence match in the queried database,
even when those sequences were unrelated (Durbin, 1998; Pearson,
1995). More recently, adjusting for sequence length dependence was
also found necessary in analysis of next-generation RNA sequencing
(RNA-Seq) data (Mortazavi et al., 2008). Since the number of reads
mapped to a gene depends on its transcript abundance and length
(Cloonan et al., 2008; Gao et al., 2011; Lee et al., 2011; Mortazavi
et al., 2008), transcript length may confound gene expression
analysis (Oshlack and Wakefield, 2009), with a bias for calling a
higher proportion of long transcripts as expressed more highly.

In the Drosophila melanogaster genome, for instance, genes
have varying non-coding sequence lengths, ranging from 102 to
106 bp (Fig. 1). A prior study found that genes with more complex
expression patterns tend to have longer non-coding sequences
(Nelson et al., 2004). In prior investigations of CRMs and cis-
regulatory codes (Philippakis et al., 2006; Warner et al., 2008), it
was observed that for various input TFBS motifs there was a notable
correlation between a gene’s non-coding sequence length (i.e. total

Fig. 1. In D. melanogaster the length of a gene’s non-coding sequence varies
across four orders of magnitude, from ∼102 to 106 bp. For instance, the
C1 somatic mesoderm FC gene set has on average lengthier non-coding
sequences, with a median of 17.4 kb (25.3 kb mean) as compared with
4.3 kb (11.4 kb mean) for all genes in the genome, a difference that must
be accounted for to avoid computational artifacts.
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upstream, downstream and intronic sequence) and its CRM score.
We here find that this length-dependence artifact is more general
than previously expected. It can affect several other CRM discovery
algorithms (Fig. 2) and to our knowledge is not accounted for by
currently existing algorithms for CRM prediction and inference of
cis-regulatory codes.

In fields other than computational prediction of CRMs, a few
approaches have been proposed to correct for dependence between
two variables (Cox and Hinkley, 1974; Pearson, 1901; Seok et al.,
2002). Here, we focus on approaches that can be applied in our
context. Given a sequence score of interest, S, and a sequence length,
L, one may adjust S for potential length dependence by subtracting
ln(L) as in Equation (1) (Durbin, 1998), shown below. Alternatively,
one may regress a linear function, with slope m and intercept b, and
adjust the score as shown in Equation (2) (Durbin, 1998; Pearson,
1995).

Sadj =S−ln(L) (1)

Sadj =S−mln(L)−b (2)

In scoring of protein sequence similarity, several variations on
Equations (1) and (2) yielded different performances depending on
the scoring matrices and gap penalty combinations used (Shpaer
et al., 1996). However, the general consensus was that even simple
log-length normalization improved performance and increased the
selectivity of the queries (Shpaer et al., 1996). In RNA-Seq
analysis, Gao et al. (2011) either subtract or divide their score
by a length-dependent correction factor c

√
L−d, where L is the

gene length, d is the sequenced tag length (∼25–32 bp), and c
is an empirically derived weight (a constant). There also exists a
diversity of mathematical procedures based on principal component
analysis (PCA) (Cox and Hinkley, 1974; Nam, 2010; Pearson,
1901; Salomon, 2007) to convert potentially correlated datasets into
uncorrelated ones. However, available approaches either assume an
a priori model of the correlation relation (e.g. linear or of order 1/2),
or might overlook potential underlying structure of the correlation
relation, thereby being inflexible or inapplicable to problems with
varying correlation instances. Applying normalization methods that
are blind to the correlation structure in any particular context
may remove the overall correlation but might still yield undesired
artifacts due to data interpretation (described further below in
Section 3.3).

We present a general and flexible approach to adjust for different
dependence relations between two variables of interest (e.g. a
sequence score and its length). Our strategy derives the local
correlation structure of the dataset under consideration by fitting
a LOESS curve (Cleveland, 1979; Cleveland and Devlin, 1988) to
the score versus length (S–L) scatter plot, and dividing the scores
by the values of this fitted curve at the corresponding length value.
We compare the performance of our LOESS approach to that of four
other normalization methods and benchmark them in the context of
cis-regulatory code discovery in embryonic mesoderm development
and nervous system development in the fruit fly D. melanogaster.

2 METHODS
We first present the cis-regulatory code and CRM discovery frameworks,
followed by the datasets and normalization methods used in this study.

2.1 Cis-regulatory code discovery
To computationally predict cis-regulatory codes, we use a gene set (GS)
enrichment analysis framework (Subramanian et al., 2005) implemented in
the Lever algorithm (Warner et al., 2008). Lever is a general method that
infers cis-regulatory codes for predefined sets of putatively co-regulated
genes (e.g. genes co-expressed under different conditions, with similar
biological function, within the same pathway, etc.), by considering over-
represented TFBS motif combinations within putative CRMs, typically
predicted by the CRM prediction algorithm PhylCRM (Warner et al., 2008).
A main advantage of using the algorithms Lever and PhylCRM (detailed in
Sections 2.2.1 and 2.3, respectively) is that they provide the capability of
exploring several tens of kb of non-coding sequences, as opposed to other
algorithms (Ho Sui et al., 2005; Kreiman, 2004) that might intrinsically
consider only proximal promoter regions of a fixed length (e.g. ±1 kb around
transcription start sites). Although Lever was developed in conjunction with
PhylCRM, Lever can be used with any CRM prediction algorithm.

2.2 CRM discovery
2.2.1 PhylCRM CRM prediction algorithm: Briefly, the PhylCRM score
PS(MCi,w) is a statistical measure of TF binding site density and
evolutionary conservation for a given TFBS motif combination MCi over
a sequence window of width w.

Specifically, PS(MCi,w) represents the –log(P-value) of observing
another window of size w with a higher density of conserved motif matches
for MCi in the entire non-coding genome. Thus, the PhylCRM score by
itself accounts for the window length over which it is computed. To assess
conservation of a TF binding site within a set of aligned genomic sequences,
PhylCRM uses the probabilistic evolutionary model MONKEY (Moses et al.,
2004). This model computes the extent to which each position along a
putative binding site is both conserved and a close match to the TFBS motif.
The PhylCRM score PS(MCi, w) is then based on a Fuzzy Boolean logic
integration of the MONKEY score across individual motif occurrences, for
a particular combination MCi and a window size w (Warner et al., 2008).

To identify the most likely CRM for a given motif combination MCi

and gene gl , we define the ‘gene CRM score’ S(MCi; gl) as the highest
(maximum) PhylCRM score. Note that S(MCi; gl) is the maximum PhylCRM
score evaluated over a continuous range of user-specified window sizes
(e.g. 50–1000 bp) and over the entire non-coding sequence of a gene gl .

Thus, a gene CRM score of zero, S(MCi; gl) = 0, indicates that the gene
has no sequence windows that contain TFBS motif matches for the motif
combination MCi. In a biological sense, a gene CRM score of 0 indicates
that MCi is unlikely to directly regulate the gene gl through a cis-acting DNA
regulatory element.

2.2.2 Other CRM prediction algorithms: To assess whether the length
variation problem affects other CRM prediction algorithms, we focused on
the following algorithms that were reviewed and performed well in Klepper
et al. (2008) and Su et al. (2010): MSCAN (Alkema et al., 2004), Cluster-
Buster (Frith et al., 2003) and STUBBMS (i.e. Stubb with conservation)
(Sinha et al., 2006). These algorithms use different computational strategies
and types of inputs, as described in Section 3.1. Default parameter settings
were used. For each algorithm and for each motif combination, the ‘gene
CRM score’ represents the score of a gene’s highest scoring, predicted CRM.

2.3 Lever analyses
Lever is a cis-regulatory code finder (Warner et al., 2008) based on GS
enrichment analysis (Subramanian et al., 2005). Lever identifies significant
over-representation of particular combinations of evolutionarily conserved
TFBS motif occurrences within putative CRMs in the non-coding regions
of predefined foreground gene sets. Formally, given an input collection
of N foreground gene sets F1,...,FN , a corresponding collection of N
disjoint background gene sets B1,...,BN is constructed to form the compound
foreground–background gene sets GSm ={Fm,Bm},m∈{1,...,N}. For each
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given motif combination MCi, the gene CRM score S(MCi; gl) is used to
rank every gene gl in each GSm; the ranks are subsequently used to compute
the Wilcoxon–Mann–Whitney (WMW) statistic [equivalent to the area
under the receiver operating characteristic curve (AUC)]. The AUC reflects
the likelihood of observing a higher-scoring CRM in a randomly chosen
foreground gene gl ∈Fm with respect to a randomly chosen background gene
gl ∈Bm. Thus, for a given motif combination, a high AUC value indicates
that the foreground genes tend to have higher-scoring CRMs than their
background gene counterparts; a motif combination with a high AUC value
is thus hypothesized to be a cis-regulatory code of the foreground GS under
investigation. To assess the statistical significance of observing such an AUC
value (or higher) by chance, Lever performs many permutations (default
1000) of the labels between the foreground and background genes in each
compound GSm, re-computes the AUC statistic on each permuted dataset,
and estimates the resulting false discovery rate (FDR; Storey, 2002).

2.3.1 Parameter settings: For all Lever and PhylCRM analyses, window
widths ranged between 50 and 1000 bp. To assess evolutionary conservation,
the genomes of all 12 sequenced fly species (Adams et al., 2000; Celniker
et al., 2002; Clark et al., 2007; Richards et al., 2005) were used. To identify
putative TFBS motif matches, an information content cutoff of one SD below
the motif’s position weight matrix (PWM) average score was used (Stormo,
2000). The PWM average score represents the mean information score over
all 4k sequence variants, where k is the length of the PWM. We used
Lever in two broadly defined biological contexts—embryonic mesoderm
development and neural development—that encompassed seven different
foreground GSs. For the mesodermal GSs, we used Lever to evaluate all
Boolean AND motif combinations up to five-way combinations. For the
neural GSs, we used Lever to evaluate Boolean AND as well as OR motif
combinations up to seven-way combinations since the putative code could
involve an OR logic. We used default settings for all other Lever parameters.

2.3.2 Genome pre-processing: The D. melanogaster genome (BDGP
Release 5/dm3) and its 11 MultiZ Drosophila alignment genomes were
pre-processed as in (Philippakis et al., 2006). Both coding and repetitive
sequences were masked. For each gene, the non-coding region that we
examined included its introns and the entire upstream and downstream
intergenic regions until the nearest flanking genes.

2.3.3 Permuted motif analysis: We conducted this analysis to further
assess the specificity of a given motif combination for its target GS.

Initially, for each pairing of motif combination and GS, the FDR on the
AUC Lever statistics was derived by randomly relabeling the foreground and
background genes, yet using real TFBS motifs.

In this additional analysis, we generated column-permuted motifs
(i.e. maintaining nucleotide composition, but shuffling the nucleotide
positions) as negative controls for each input, real TFBS motif. We repeated
the Lever analyses 100 times using different versions of these shuffled
motifs. An empirical P-value equal to N /100 can be derived, where N is
the number of shuffled (negative control) motif combinations that scored
more significantly than their original real motif counterparts.

Therefore, for a given GS, a motif combination was considered a putative
cis-regulatory code if it proved statistically significant with an AUC ≥0.6,
FDR q≤0.05 (Warner et al., 2008) and an empirically derived p≤0.05.

2.4 Biological datasets
We conducted our computational study on two biological systems—an
embryonic somatic mesoderm founder cell (FC) GS and neural GSs—for
which prior experimental support exists for their cis-regulatory codes (Castro
et al., 2005; Halfon et al., 2000, 2002; Philippakis et al., 2006; Reeves and
Posakony, 2005). We also performed our analysis for additional systems—an
additional embryonic somatic mesoderm GS and cardiac mesoderm GSs—
where we sought to discover potentially novel codes (Zhu et al., 2012). Our
analyses center on D. melanogaster GSs particular to four different cell types

in the embryonic mesoderm and to three cell types in the peripheral nervous
system.

2.4.1 Gene sets: The C1 (cluster 1) GS (Philippakis et al., 2006) is a
collection of 37 genes that are co-expressed in a subset of somatic mesoderm
FCs and that respond similarly across 12 genetic perturbations of myogenesis
(Estrada et al., 2006). The FCM-all GS comprises 104 genes expressed in
fusion-competent myoblasts (FCMs) (Estrada et al., 2006), cells which fuse
with individual FCs to form somatic muscles. PC-only and CC-only are sets
of 39 and 35 genes that are expressed only in pericardial cells (PCs) or cardial
cells (CCs), respectively (Ahmad et al., in press; Zhu et al., 2012), the two
main cell populations of the embryonic heart vessel in Drosophila. The PNC
GS comprises 44 genes validated by in situ hybridization to be expressed
in proneural cluster (PNC) cells, which have the potential to adopt neural
cell fates in the larval wing (Reeves and Posakony, 2005). The SOP GS is
a subset of 26 PNC genes expressed in sensory organ precursor (SOP) cells
in the peripheral nervous system. The non-SOP GS is the remaining subset
of 18 PNC genes expressed in the inhibited cells, which adopt an epidermal
cell fate (Reeves and Posakony, 2005). The genes in each GS are provided
in Supplementary Table S1.

2.4.2 Transcription factor binding site motifs: Our input collection
of TFBS motifs that might regulate the four mesodermal GSs under
consideration included motifs for the TFs activated by the Wg, Dpp and
Ras pathways: T cell factor (dTCF), Pointed (Ets motif), Twist (Twi),
Tinman (Tin) and Mothers against dpp (Mad). For the neural GSs, we
additionally considered motifs for Achaete/Scute (Ac/Sc) and Suppressor of
Hairless (Su(H)). All motifs (Supplementary Table S2) were obtained from
(Philippakis et al., 2006).

2.5 Normalization methods
We examined the performance of Lever in identifying putative cis-regulatory
codes using the following five general normalization approaches. For each
motif combination under consideration, normalization is applied accordingly
to all genes under investigation in all compound foreground–background

gene sets gl ∈
N∪

m=1
GSm.

2.5.1 Length matching: Previously length matching (LM) was applied
to genes analyzed by the CodeFinder algorithm to evaluate potential cis-
regulatory codes (Philippakis et al., 2006); CodeFinder was subsequently
scaled-up and further developed in Lever (Philippakis et al., 2006; Warner
et al., 2008). For every foreground GS Fm a corresponding background GS
Bm was constructed. Each background set is chosen so as to contain at least 20
times as many genes as the foreground set, and so that the distribution of non-
coding sequence lengths of the foreground and background sets are matched.
We use LM here as the baseline method for length normalization, and the
generated length-matched background sets are used in all other normalization
methods examined in this article.

2.5.2 Linear log-regression normalization: This approach was initially
applied in Lever because of its success in protein sequence homology
searches (Durbin, 1998; Pearson, 1995). Considering only genes with non-
zero CRM scores, a linear curve with slope m and intercept b is regressed to
the scatter plot of ‘gene CRM score’ versus ‘non-coding sequence length’.
Then, for each gene gl the CRM score is adjusted as in Equation (2). Linearity
between sequence score and length is here assumed.

2.5.3 PCA-based normalization: Based on PCA for multivariate data, a
linear transformation can be used to decorrelate two (or more) variables,
despite a non-linear correlation between them (Cox and Hinkley, 1974; Nam,
2010; Pearson, 1901; Seok et al., 2002). Thus, given a matrix Xmxn with n
variables (here, n=2: ‘gene CRM score’ and ‘non-coding sequence length’)
for m genes, and a matrix Zmxm with all of its entries set equal to 1, we apply
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the following two-step mapping:

D=X − 1

m
ZX (3.a)

T =D
(
DTD

)−1/2
(3.b)

to transform the variables so that they have zero correlation with each
other (and zero mean). We chose this method as a general representative
for other more recent state-of-the-art variations of PCA-based decorrelation
methods, such as DECO (Nam, 2010). DECO has recently been used
to decorrelate expression datasets in GS analyses. This method conducts
eigenvalue decomposition of a covariance matrix, followed by linear
transformations and eigenvalue rescaling and truncation. DECO is similar,
for instance, to the Mahalanobis-based transformation (Salomon, 2007)
for pixel decorrelation in image compression, but is rather slow and may
present numerical instabilities despite the sophisticated shrinkage covariance
estimator used (Schafer and Strimmer, 2005). Therefore, because of the
similarity in decorrelation performance between DECO and the general
PCA-based approach described by Equations (3.a) and (3.b) (Supplementary
Fig. S1), we chose to use the latter method.

2.5.4 Length division: This method is similar in spirit to the recent RNA-
Seq correction approach from (Gao et al., 2011). There, the score is divided
by a correction factor c

√
L−d, with L being the effective gene length, d the

sequenced tag length (∼25–32 bp), and c an empirically derived constant
(0.0301 or 0.0436). However, since the score-length correlation relation is
not generally of order 1/2, normalizing by

√
Ll or

√
log10(Ll) is ineffective

(Supplementary Fig. S2). Therefore, we instead use LD as a general approach
where, for each gene gl , the CRM score is divided by log10(Ll), the logarithm
of the associated non-coding sequence length.

2.5.5 LOESS-fit normalization: We implemented this method because of
its flexibility in capturing the score-length relationship without any a priori
assumptions. First, considering only genes with non-zero CRM scores, a
LOESS curve is regressed to approximate the local dependence relationship
between the gene CRM score and the non-coding sequence length. Then, for
all genes, the CRM score is divided by the value of the LOESS curve at the
corresponding non-coding sequence length. A second-order LOESS curve
with a smoothing parameter of 0.5 was used. We found the normalization
to be robust to the value of the smoothing parameter considering a range
of values (Supplementary Fig. S3), and we chose this parameter to avoid
overfitting the data (Supplementary Fig. S4).

2.6 Normalization performance evaluation
Normalization is applied using information from all available genes.
However, using all genes to normalize and assess the post-normalization
score-length correlation would not necessarily represent a stringent
evaluation of performance. Therefore, we instead compute this correlation
using different sampled foreground–background GSs. Because subsequent
enrichment analyses are conducted on these same foreground–background
GSs, we must ensure the successful removal of the correlation at the GS
level as well, since any remnant correlation might bias the results.

3 RESULTS
Among other genes, mesodermal genes and non-SOP genes
have complex gene expression patterns (Casal and Leptin, 1996;
Philippakis et al., 2006) and lengthy non-coding sequences (Fig. 1
and Supplementary Fig. S5). For example, as shown in Figure 1,
the C1 GS has a median non-coding sequence length of 17.4 kb as
compared with 4.3 kb for all D. melanogaster protein-coding genes
(WMW P-value <8.6×10−10). Thus, GS analyses that examine
non-uniform sequence lengths must correct for length variability to
avoid potential artifacts.

We first show that dependence between a gene’s CRM score
and its non-coding sequence length affects several CRM prediction
algorithms. We then compare our LOESS method to other
normalization methods in correcting for this dependence and in
identifying validated cis-regulatory codes.

3.1 Length dependence of gene CRM score affects
a variety of CRM discovery algorithms

As a result of length variability, longer sequences provide the
opportunity for an algorithm to predict higher scoring CRMs by
chance alone. Many well-known algorithms display to some extent a
correlation between their gene CRM score and the gene’s non-coding
sequence length (Fig. 2).

Although results are depicted for only MCi = ‘Ets AND Twi
AND Tin’ (Fig. 2), the correlation effect is consistent across a
wide variety of motif combinations, despite the different algorithmic
strategies and types of inputs used (Supplementary Fig. S6). For
instance, PhylCRM uses its own heuristic scoring scheme that
exploits phylogenetic information across all 12 fly species, based on
the MONKEY evolutionary model (Moses et al., 2004). STUBBMS
(Sinha et al., 2006) employs a different phylogenetic strategy, uses
only one other fly species (here, the distantly related Drosophila
grimshawi), and is based on a hidden Markov model (HMM).
Cluster-Buster (Frith et al., 2003) is also an HMM scheme, but unlike
STUBBMS does not use the Baum–Welch algorithm on the DNA
sequence to derive the state transition probabilities. Cluster-Buster
heuristically derives these probabilities from expected input motif
cluster structure parameters, and from background distributions
from sliding windows along the non-coding genome. Both Cluster-
Buster and MSCAN (Alkema et al., 2004) do not use phylogenetic
information. MSCAN is not HMM-based and uses its own heuristic
to evaluate the combined statistical significance of dense clusters of
motif matches within a sliding window. Despite these considerable
differences in the underlying algorithms and types of inputs used,
their calculated gene CRM scores tend to correlate with non-coding
sequence length.

3.2 Length matching
As an initial solution to this length variability problem, LM was
devised to generate for each foreground GS a background set with a
matched non-coding length distribution (Philippakis et al., 2006).
However, LM by itself does not solve the distinct problem of
having a gene score depend on its non-coding sequence length.
For example, considering the union of the C1 genes and their

Fig. 2. Gene CRM scores generated by four different CRM prediction
algorithms are highly correlated with genes’ non-coding sequence length,
across all D. melanogaster genes, considering the TFBS motif combination
Ets AND Twi AND Tin as a representative example.
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length-matched background genes for the three-way AND motif
combination MCi = ‘Ets AND Twi AND Tin’, there remains a
considerable score-length correlation (rp ∼0.62), close to that of
all genes under consideration (rp ∼0.7) (Supplementary Fig. S7).
LM alone is insufficient to adjust for the score-length correlation
artifact across different foreground and background gene sets GSm
for combinations of real (Fig. 3B, panel i; Supplementary Fig. S8,
panels a and c) and shuffled motifs (Fig. 3B, panel ii; Supplementary
Fig. S8, panels b and d). Highlighting the C1 genes emphasizes the
length dependence of gene CRM scores (Supplementary Fig. S9).
Since length dependence may confound subsequent motif analyses,
further normalization is necessary in addition to LM.

3.3 Log-length regression
For different gene sets and motif combinations, applying log-
length regression (LLR) reduces the median Pearson correlation to
∼0.1–0.2 in the case of AND combinations (Fig. 3B, panels iii and
iv; Supplementary Fig. S8, panels e and f) and to ∼0 in the case of
OR combinations (Supplementary Fig. S8, panels g and h). Despite
this considerable reduction in correlation, LLR is incompatible with
our cis-regulatory code discovery framework on two fronts, which
may lead to serious artifacts.

First, in a gene set enrichment-based cis-regulatory code
discovery framework, two genes with no candidate CRMs
are interpreted as functionally equivalent ‘non-target’ genes,

irrespective of their non-coding sequence length. That is, despite
non-coding sequence length differences, both genes are unlikely to
be targeted directly by a motif combination of interest. Therefore,
it is desirable that ‘non-target’ genes receive an equal score (e.g.
zero, both pre- and post-normalization) irrespective of non-coding
sequence length. However, LLR adjusts zero-scoring ‘non-target’
genes to acquire unequal and length-dependent scores (Fig. 3A,
panels iii and iv; encircled in blue in Supplementary Fig. S10, panels
i and iii, and ii and iv), thereby breaking down the desired property
that ‘non-target’ genes receive an equivalent score irrespective of
non-coding sequence length.

Second, it is desirable for a ‘potential target gene’ to acquire an
adjusted score greater than that of a ‘non-target’ gene. However,
with LLR, some putative ‘non-target’ genes may rank higher than
‘potential target genes’ (Fig. 3A, panels iii and iv; Supplementary
Fig. S10, panels iii and iv). The effect is stronger for the Ets AND
Twi AND Tin motif combination (Supplementary Fig. S10, panel
iv), for which very short ‘non-target’ genes (encircled in blue) score
more highly than most of the ‘potential target genes’.

As a result, in gene set analyses, artifacts may occur where
strong enrichment is observed for a motif combination in a given
GS, even though no or very few genes have motif occurrences in
their non-coding sequence. This issue is more pronounced for AND
combinations which, by the nature of the scoring scheme, tend to
have a higher number of zero-scoring genes.

(a) Original (LM) LLR PCA LD LOESS

Original (LM) LLR PCA LD LOESS(b)

Fig. 3. Comparison of different length correction methods. (i, ii) LM (Original), (iii, iv) LLR, (v, vi) PCA-based normalization (PCA), (vii, viii) LD and (ix,
x) division by the LOESS-fit curve (LOESS). (a) Overall effects of the different length correction methods on the Pearson correlation coefficients between
the gene CRM score (for PhylCRM) and the noncoding sequence length when considering the Twist motif alone (above) and the motif combination Ets AND
Twi AND Tin (below). (b) Box plots summarizing the Pearson correlation coefficients between the gene CRM score (for PhylCRM) and noncoding sequence
length resulting from 31 different real TFBS motifs or motif combinations for each of four different GSs (i.e. 31×4=124 pairings of motifs and GSs) (above),
and from 100 shuffled motifs or combinations thereof constructed and used in place of the real TFBS motifs (i.e. 31×4×100=12400 pairings of motifs and
GSs) (below).
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3.4 PCA-based normalization
Although the PCA-based approach generates relatively similar S–L
scatter plots as does LLR (Fig. 3A, panels iii and iv, and iv and vi),
in general, it performs worse than LLR with a wider interquartile
range of the Pearson correlations. For different GSs and motif
combinations, applying PCAreduces the median Pearson correlation
to −0.2–0 (range ∼−0.5–0.2) in the case of AND combinations
(Fig. 3B, panels v and vi; Supplementary Fig. S8, panels i and
j) and to a median of 0 (range −0.4–0.3) in the case of OR
combinations (Supplementary Fig. S8, panels k and l). Nonetheless,
PCA-based methods suffer from the same potential artifacts as LLR
(Supplementary Fig. S10).

3.5 Length division
To avoid potential artifacts that may arise in LLR and PCA (due to
an inherent subtraction operation [Equation (2) and Equation (3.a),
respectively], we tested the LD normalization method, whereby the
gene CRM score Si is divided by log10(Li). However, since the
relationship between Si and log10(Li) is not linear, LD does not
eliminate the correlation effectively (Fig. 3A, panels vii and viii;
Fig. 3B, panels vi and vii; Supplementary Fig. S8, panels m to
p), resulting in a median rp ∼0.3–0.5. Therefore, instead of using
higher-order or exponential curves, for which one needs to select
the function and its parameters a priori,we sought to find a fitting
function that is general, simple and flexible.

3.6 LOESS-fit normalization
We pursued LOESS as an alternate approach to better characterize
and reduce the length-dependence relationship in gene CRM scores.
We use the LOESS-fit approach to derive empirically the relationship
between the gene CRM score and log10(Li). This fit is then used
to adjust the CRM score for each gene. After normalization by the
LOESS curve, the Pearson correlation between the gene CRM score
and non-coding length has a relatively tight distribution around zero
across all seven GSs for the real TFBS motifs (i.e. 505 MC–GS
pairings; Fig. 3B, panel ix; Supplementary Fig. S8, panels q and s;
range ±0.1) and for the shuffled motifs (i.e. 50 500 MC–GS pairings;
Fig. 3B, panel x; Supplementary Fig. S8, panels r and t; range ±0.2).
LOESS-fit normalization was the only method for which the median
of the distribution of Pearson correlations was consistently 0, as
evidenced by a WMW AUC close to 0.5 (Supplementary Table S3).
In sum, the LOESS-fit approach is the most consistent and most
effective method for correcting the length-dependence correlation.

We also tested various exponential, logarithmic, trigonometric
and hyperbolic functions based on the LOESS fit, and found that a
simple LOESS fit reduced correlation the most (data not shown).

3.7 Cis-regulatory code motif analysis
To further assess the utility of the LOESS-fit correction of gene
CRM scores, we considered the corrected gene CRM scores in cis-
regulatory code motif analysis in real biological contexts.

3.7.1 LOESS-fit correction helps recover known cis-regulatory
codes: First, we first focused on the GS C1 for which there is
prior experimental support for the AND motif combination Ets AND
Twi AND Tin acting as a cis-regulatory code (Philippakis et al.,
2006). The original version of Lever (i.e. length-correction by LM)

(Warner et al., 2008) does not yield any statistically significant
codes for the GS C1 considering five TFBS motifs of relevance
in mesoderm development [Fig. 4A (LM); Supplementary Table
S4]. However, Lever with LOESS-fit normalization yields three
statistically significant codes involving these five motifs (AUC
≥0.60, q≤0.05; Fig. 4A–C; Supplementary Tables S5–S7) and
includes the Ets AND Twi AND Tin cis-regulatory code for the
C1 GS. To further assess the robustness of our results, we ran the
Lever analysis using 100 shuffled versions of the five real TFBS
motifs as negative controls. No shuffled motifs or combinations
thereof scored more significantly than the three putative codes
(p<0.01; Supplementary Tables S5–S7). Furthermore, comparing
these significant codes to those identified by a prior cis-regulatory
code evaluation framework (CodeFinder) that used a different
CRM scoring scheme and phylogeny for only three fly species
(ModuleFinder) (Philippakis et al., 2005; Philippakis et al., 2006),
yielded generally consistent results (Supplementary Table S8).

To assess the generality of LOESS-fit correction of gene
CRM scores, we applied it in a second biological context. In
D. melanogaster neural development, there is experimental support
for the motifs Ac/Sc and Su(H) participating in a cis-regulatory code
for the non-SOP GS (Castro et al., 2005; Reeves and Posakony,
2005). We ran Lever with LOESS-fit correction to investigate both
AND and OR combinations of these motifs along with the five
motifs analyzed for the mesodermal GSs. We repeated the analysis
with 100 shuffled versions of each of the seven real TFBS motifs.
We recovered Ac/Sc (alone), Su(H) (alone), as well as the Boolean
AND and OR combinations of Ac/Sc and Su(H) among the top
statistically significant codes, with five or fewer of 100 of their
shuffled motif combinations scoring more significantly (i.e. p≤0.05)
(Supplementary Table S7).

3.7.2 LOESS-fit normalization performs favorably against other
competing methods in recovering known cis-regulatory codes: We
repeated all our previous PhylCRM and Lever analyses using LLR,
PCA and LD to correct for length dependence (Supplementary
Tables S9–S11). In general, all these forms of normalization
improved detection of putative codes as noted by an increase in
the AUC and a decrease in the q-value with respect to the original
Lever analyses performed using LM alone (Fig. 4). For the non-
SOP GS, LOESS-fit compares favorably to the other normalization
methods in recovering validated codes in a statistically significant
fashion. For the validated Ets AND Twi AND Tin code for C1,
the LOESS-fit approach performed the best (Fig. 4A). However, as
shown above, both LLR and PCAnormalization may yield undesired
artifacts (Sections 3.3 and 3.4), and LD does not remove length
dependence as effectively as does LOESS-fit (Sections 3.5 and 3.6).

3.7.3 LOESS-fit correction improves cis-regulatory code results
obtained using MSCAN, Cluster-Buster and STUBBMS CRM
prediction algorithms: We repeated our Lever analyses using
three other well-known CRM prediction algorithms: MSCAN
(Alkema et al., 2004), Cluster-Buster (Frith et al., 2003) and
STUBBMS (Sinha et al., 2006). We compared their performance
in recovering validated cis-regulatory codes with versus without
LOESS-fit correction. In general, LOESS-fit correction did not
drastically change the AUC values, but tended to improve the
statistical significance (reducing the q-value) of highly scoring code
predictions (Supplementary Tables S12–S14; Fig. 5). We note that
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(a) (d)

(b) (e)

(c) (f)

Fig. 4. Comparison of the different normalization methods in recovering known cis-regulatory codes in the context of Drosophila mesoderm development
(a–c) and neural development (d–f). Good performance is characterized by both a high AUC value and a low q-value (Section 2.3).

these results must be interpreted with care, as LOESS-fit correction
cannot improve the intrinsic ability of any CRM prediction algorithm
to identify true biological signals; however, LOESS-fit correction
does effectively reduce artifactual length dependency of the resulting
CRM scores.

4 DISCUSSION
Dependence of the score of a biological sequence on the length of the
sequence may confound or conceal true biological signals. Here, we
have shown that this problem occurs for several well-known CRM
prediction algorithms. We have presented a general method to adjust
for length-dependence of a DNA sequence score. Our LOESS-fit
approach is consistent in reducing the correlation between sequence
length and score, not only in comparison to other methods (e.g.
length division (LD), PCA-based methods and linear-log regression
(LLR)), but also in absolute terms (Fig. 3B; Supplementary Fig. S8).
In the context of cis-regulatory code discovery, LOESS-fit correction
allowed the Lever algorithm (Warner et al., 2008) to recover
experimentally validated codes in two different biological contexts
in D. melanogaster (Fig. 4).

Compared with other normalization approaches, LOESS-fit
performed favorably in recovering the validated codes (Fig. 4),
and does not suffer from the artifacts that LLR and PCA may
yield (Supplementary Fig. S10). In addition, LOESS-fit correction
is useful in application to a variety of CRM prediction algorithms in
analyses aimed at identifying putative cis-regulatory codes (Fig. 5).

Our GSs were based on relatively stringent biological evidence.
We focused on GSs comprising genes that are expressed in
relatively homogeneous cell types, that were confirmed by in

situ hybridization, and that have prior experimental evidence for
a cis-regulatory code. GSs could be constructed alternatively to
comprise genes with shared Gene Ontology (GO) annotation terms
or pathway involvement.

Some major advantages of LOESS, as compared with other
regression methods, are that it does not call for a priori specification
of a fitting function and that it is a flexible and simple fitting
approach used for a wide range of purposes (Gijbels and Prosdocimi,
2010). Our data points are generally dense (e.g. Fig. 2). However,
potential limitations of the LOESS-fit method may arise in small or
sparse datasets, where LOESS might overfit or inaccurately fit the
data points. On another level, to avoid generating non-monotonic
LOESS curves that might overfit the data, we have empirically
chosen the value of the smoothing parameter to be robust across
various motif combinations and GSs (Supplementary Figs S3 and
S4). Potential artifacts might arise in a dataset with varying data
density, such as around the extreme ends of a distribution, where
LOESS interpolation might deviate from the sparse points that it
tries to fit. We seldom encountered such deviations, which occurred
mostly for genes with particularly short non-coding sequence lengths
and with low gene CRM scores, where the LOESS curve could
go below zero. To guard against such deviations, we implemented
a small saturation threshold, t ∼0.01, so that the LOESS curve
fit_LOESS = max(t, fit_LOESS) always remains >0 (or a small
value, t, above 0).

We considered the possibility of score inflation where the LOESS
curve came close to zero. However, since the scores fit by the LOESS
curve are also generally close to zero and of the same order of
magnitude, their ratio will not be inflated. Of course, an outlier score
that is much greater than the LOESS curve will be inflated; however;
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(a) (d)

(b) (e)

(c) (f)

Fig. 5. Comparison of the performance of four different CRM prediction algorithms in identifying known cis-regulatory codes without LOESS correction
(black bars), and with LOESS correction (white bars). In general, LOESS correction improves performance as noted by a decrease in the FDR q-values.
Although LOESS correction is effective in reducing score-length correlation, it cannot improve the intrinsic ability of CRM finders in identifying true biological
signals.

that could be the case of a short sequence containing a likely CRM.
We control for potential low-score inflation in our Lever analyses,
by first length-matching the foreground and background genes, and
then transforming the scores into ranks to robustly assess enrichment
of the foreground gene scores with respect to those in the background
set, in the face of outliers.

As originally applied in the context of protein similarity scores
(Durbin, 1998; Pearson, 1995), LLR did not encounter zero-scoring
elements and thus did not lead to artifactual results analogous
to those resulting from GS-based motif analysis of non-coding
sequences. However, because of the structure of our data (i.e. the
existence of zero-scoring genes and their biological interpretation
as non-targets for a given code), PCA-based normalization
methods (Cox and Hinkley, 1974; Nam, 2010; Pearson, 1901)
can produce similar artifacts as LLR, making both of these
methods inappropriate in the context of GS analyses (Supplementary
Fig. S10).

Our use of gene CRM scores corrected by LOESS-fit
normalization resulted in successful recovery in Lever analyses
of both known and putative cis-regulatory codes for genes
involved in embryonic somatic mesoderm development and in
neural development in D. melanogaster. We have also used Lever
with LOESS-fit correction to identify novel cis-regulatory codes
involving other TFBS motifs for genes expressed in PCs and
CCs, which were experimentally validated by Zhu et al. (2012);
without LOESS-fit correction, no statistically significant codes could
be obtained. Although here we focused on Drosophila GSs, we
anticipate LOESS-fit correction of gene CRM scores to be useful
for cis-regulatory code analyses in other organisms.

The LOESS-fit length normalization method is general and may
be useful beyond cis-regulatory code analysis, for other DNA,

RNA or protein sequence analyses where a score might depend on
another variable such as the length of the sequence. We anticipate
that such improvements in controlling for length dependence in
scoring of biological sequence data will lead to improved discovery
of important biological sequence patterns in gene regulation and
function.
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