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SUMMARY: There is considerable scientific interest in knowing the probability that a site-specific

transcription factor will bind to a given DNA sequence. Microarray methods provide an effective

means for assessing the binding affinities of a large number of DNA sequences as demonstrated

by Bulyk et al (2001) in their study of the DNA-binding specificities of Zif268 zinc fingers using

microarray technology. In a follow-up investigation, Bulyk, Johnson and Church (2002) studied

the interdependence of nucleotides on the binding affinities of transcription proteins. Our paper

is motivated by this pair of studies. We present a general statistical methodology for analyzing

microarray intensity measurements reflecting DNA-protein interactions. The log-probability of a

protein binding to a DNA sequence on an array is modeled using a linear ANOVA model. This

model is convenient because it employs familiar statistical concepts and procedures and also because

it is effective for investigating the probability structure of the binding mechanism.
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1. Background

Genes are regulated in part through the action of site-specific transcription factors. The DNA

sequences at which these proteins bind are not unique. Binding can also occur at variants of

the optimal site with some variants being more preferential for binding than others. There is

considerable scientific interest in knowing the binding affinity of a sequence, i.e. the probability

that a protein will bind to a given sequence. Micoarray methods permit the assessment of the

binding affinities of a large number of DNA sequences in a single study. They allow the estimation

of binding affinities across the full range from very low to very high affinities. This estimation

is valuable because it is possible that even low-affinity DNA sites are functionally important in

transcriptional regulation of gene expression.

Bulyk, Huang, Choo and Church (2001) studied the DNA-binding specificities of Zif268 zinc

fingers using microarray technology in an experiment that tested the feasibility of using microarrays

for analyzing large numbers of DNA-protein interactions. They employed the full set of 64 possible

3-bp (base pair) sequences in their study but noted that “A full set of sequences spanning all possible

8-bp binding sites would consist of roughly 65,000 spots which could fit onto a single microscope

slide” (p. 7163). Thus, the cost of DNA synthesis would appear to be the only practical limitation

to generalizing the experimental method from a scientific point of view. We return to consider the

implications of large scale studies for statistical analysis later.

In a follow-up investigation, Bulyk, Johnson and Church (2002) studied the interdependence

of nucleotides in the binding affinities of transcription proteins using several techniques, including

t-tests and a hidden Markov model. Two statistical problems are of interest in this kind of context.

First, it is of interest to test whether the probability of a protein binding to any sequence of nu-

cleotides, representing a transcription site, equals the mathematical product of the probabilities for

the individual nucleotides in the sequence. This equality would indicate that binding is probabilisti-

cally independent from one nucleotide to another. Second, where the hypothesis of independence is

rejected, it is of interest to study the type of dependence in the sequence that is predictive of binding

affinity. The analysis of interdependence for transcription binding sites has received attention from

a number of scientific investigators. Man and Stormo (2001), for example, found dependence for

nucleotides at positions 16 and 17 in the 21-bp binding site of Salmonella bacteriophage repressor

Mnt. Related background work on methodologies for studying DNA binding site preferences may be

found in Staden (1988), Stormo, Schneider and Gold (1986), Zhang and Marr (1993), Ponomarenko

et al (1999), Wingender, Karas and Knuppel (1997) and Quandt, Frech, Karas, Wingender and

Werner (1995).
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We present a general statistical methodology for analyzing microarray intensity measurements

reflecting DNA-protein interactions. The log-probability of a protein binding to a DNA sequence on

an array is modeled using a linear analysis of variance (ANOVA) model. This model is convenient

because it employs familiar statistical concepts and procedures and also because it is especially

effective for investigating the probability structure of the binding mechanism. For example, the

hypothesis of whether DNA binding sites are mainly composed of independent nucleotide selections

is easily tested by our model. We show how the dependence structure of the binding probability

distribution can be explored by statistical methods. We propose several measures for describing the

binding affinity and dependence structure. The strategic adaptation of the methodology to cope

with large scale investigations (long nucleotide sequences) is discussed.

2. Log-probability ANOVA Model

Each nucleotide in a sequence defining a potential binding site is represented by one letter from

the nucleotide alphabet {A, C, G, T}. We denote the DNA nucleotide sequence at a given spot

on the array by index a = {a1, a2, · · · , al}, where aj denotes the nucleotide at position j in the

sequence. Each sequence is assumed to be of length l, where l > 1. The sequence index a ranges

over a set A, which may contain up to 4l possible sequences. Some or all of the possible sequences

may appear on an array, including replicates. In developing the model initially, we assume that

the array contains all possible sequences, possibly replicated in equal numbers, so the experimental

design is balanced. Alternative designs that relax this requirement are described in the last section.

Our modeling begins with the observation that microarray intensity measurement at a spot (for

example, a fluorescence measure) varies in proportion to the number of fundamental binding events

that occur between the target protein and the DNA sequence on the spot. The number of binding

events occurring on a spot containing sequence a is denoted by random variable Na. We assume

that the mean of Na equals N Pa, where N is a fixed large count that can be interpreted as the

maximum or saturation number of potential binding events that might occur at any spot on the

array, and Pa = P (a) is the probability that the protein molecule binds on sequence a. We assume

that the experiments are performed in a way that avoids the saturation threshold for any spot, i.e.,

that Pa is not too large. We do not specify an exact distribution form for Na but we anticipate

that it is related to the binomial distribution family.

We denote the microarray intensity at the spot with sequence a by Wa and assume that the

intensity is proportional to Na, i.e., Wa = c Na for some constant c. Thus, Wa has mean value

E(Wa) = c N Pa. Letting Ya denote the natural log-intensity, it follows that Ya and binding
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probability Pa for sequence a are related as follows under our proposed model.

Ya = ln Wa = ln (c N ) + ln Pa + εa (1)

Here ln(c N ) is a parameter that is assumed to be invariant with respect to a and εa is a statistical

error term which we take to be independent for different sequences a. The error term εa will not

be exactly normally distributed with zero mean and constant variance for all sequences a but we

anticipate that these conditions will hold to an adequate approximation for reliable inferences to

be drawn from the ANOVA model. In any case, the conditions can be verified in each application,

as we will demonstrate later with our case application.

We use the following log-linear ANOVA model to describe the relation between the binding

log-probability ln Pa and the nucleotide structure of sequence a = {a1, . . . , al} (Agresti, 1996;

McCullagh and Nelder, 1989). We refer to this model as the full dependence ANOVA model.

ln Pa = β0 +
l∑

i=1

βi,ai
+

l−1∑
i=1

l∑
j>i

βij,aiaj
+

l−2∑
i=1

l−1∑
j>i

l∑
k>j

βijk,aiajak
+ · · · (2)

The successive terms on the right-hand side of the equality sign here represent a constant term

(β0), main effects (βi,ai
) and interaction effects (βij,aiaj

, βijk,aiajak
, etc.) of all possible orders for

sequences of length l. The index notation, (i, ai), (ij, aiaj), (ijk, aiajak), etc. refers to the particular

nucleotides in sequence a = {a1, . . . , al} corresponding to positions i, j, k, etc. For instance, if l = 3

nucleotides, sequence a = {G, A, T} and (i, j) = (2, 3) then βij,aiaj
= β23,AT represents the two-way

interaction effect of nucleotides A and T at positions 2 and 3 in sequence a = {G, A, T}.
The ANOVA model may be fitted by ordinary least squares. The sets of least squares estimates

of the main effects and interaction effects in (2) are subject to estimability constraints, such as the

sum-to-zero constraint or set-last-to-zero constraint. The constant term of the fitted model will be

an estimate of the sum of the leading constant in (1) and the leading constant β0 in (2), i.e., an

estimate of ln(cN )+β0. The presence of the constant ln(cN ) implies that a binding probability can

be determined from the microarray intensity data only up to an unknown multiplicative constant.

Thus, ratios of probabilities can be estimated but not the actual probabilities themselves.

With a balanced experimental design, where all sequences of length l are present in equal

numbers, the design components corresponding to the sets of regression coefficients of successively

higher order in model (2) are orthogonal. Therefore, they can be estimated successively, proceeding

from lower to higher orders. For example, the sets of main effects βi,ai
and second- and third-order

interaction effects, βij,aiaj
and βijk,aiajak

, will have independent estimators with a balanced design.

We will demonstrate the value of this property later.
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The full dependence ANOVA model (2) has 4l parameters. Referring to the constant term, main

effects and successively higher interaction terms as effects of order 0, 1, 2, . . . , k, . . . , l, respectively,

we can count parameters of each order using the following binomial expansion.

4l = (3 + 1)l =
l∑

k=0

(
l

k

)
3k

A brief tabulation of these counts is found in Table 1. We shall refer to this table later in discussing

strategies for dealing with large scale studies.

Model (2) describes the complete joint binding probability distribution for a protein with re-

spect to all nucleotide sequences of length l. The model is therefore more comprehensive than

Markov models of such sequences. Once the parameters of the ANOVA model are estimated, the

corresponding binding probability of any sequence of length l can be estimated, up to an unknown

constant. The full dependence ANOVA model corresponds to an l-way contingency table having

4 levels (the four possible nucleotides) for each of l factors (the l nucleotide sites). The literature

on log-linear models contains an extensive discussion of how the model captures various degrees

and forms of independence and conditional independence in the joint probability distribution. For

some discussion, refer to McCullagh and Nelder (1989:215-217) and Agresti (1996:146-152). It is

precisely the estimation and examination of the dependence structure of this joint distribution that

interests us in this paper. We turn to this topic in the next section.

Before leaving the presentation of the log-probability ANOVA model, we note that in some

studies there may be a need to incorporate other factors in model (2) to account for identifiable

sources of variability such as pin tip or array effects. These kinds of factors can be added to the

model as additional main effects as required. We shall not consider this type of extension further.

3. Examining Dependence in Protein Binding Affinity

If the binding probability for a whole sequence a equals the product of the probabilities for

the individual nucleotides making up the sequence, i.e., Pa =
∏l

i=1 Pai
where a = {a1, · · · , al} and

Pai
= P (ai), then ANOVA model (2) for binding probability reduces to the following form, which

contains only the main effects in model (2). We refer to this model as the independence ANOVA

model.

ln Pa = β0 +
l∑

i=1

βi,ai
(3)

Thus, the test of whether the nucleotides making up a binding sequence are probabilistically inde-

pendent is equivalent to testing if all interaction parameters in (2) are zero.

3.1 Testing for Independence
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To implement our methodology, we first fit regression model (1) with component lnPa having

the independence ANOVA form (3). This first-stage ANOVA analysis might be viewed as a nor-

malization of the microarray intensities that takes account of the relative abundance of bindings

for each nucleotide in a given sequence position. For any sequence a, the fitted response of the log

intensity Ya from this ANOVA model is denoted by Ŷ I
a, where superscript I denotes independence.

Next, in a second-stage analysis, we fit regression model (1) with component lnPa having the full

dependence ANOVA form in (2) with all main effects and higher-order interaction effects. The fitted

response for sequence a for this model is denoted by Ŷ D
a , where superscript D denotes dependence.

A comparison of the ANOVA results for the two models allows us to test whether one or more

interaction effects are significantly different from zero and, hence, if there is some probabilistic

binding dependence among the nucleotides for any sequence. Simultaneous inference methods,

such as Bonferroni procedures, can then be used to identify which particular interaction terms (or,

possibly, combinations of interaction terms) is producing the significant test result. In this way, the

dependence can be isolated to particular sequences.

3.2 Dependence Probability Ratio of a Sequence

A sequence a that has a binding probability larger than expected under the independence

assumption, i.e., Pa >
∏l

i=1 Pai
where a = {a1, · · · , al}, might be viewed as a binding attraction

of the protein to the sequence as a whole. Similarly, a sequence a with a binding probability that

is smaller than expected under independence, i.e., Pa <
∏l

i=1 Pai
, might be viewed as a binding

aversion by the protein for the sequence. Both attraction and aversion are indications of dependence

and both may be scientifically important.

If there is dependence then it can be studied for selected sequences of interest by calculating the

following ratio, which we refer to as a dependence probability ratio.

Dependence Probability Ratio =
P̂ D
a

P̂ I
a

= exp(Ŷ D
a − Ŷ I

a) (4)

The symbols P̂ D
a and P̂ I

a denote estimates of the binding probability for sequence a under the

full dependence and independence models, respectively. Although the leading unknown constant in

model (1) makes it impossible to estimate the binding probability of an individual sequence, the

ratios of such probabilities can be estimated and that is precisely what is given here in (4). The

difference Ŷ D
a − Ŷ I

a equals the sum of the estimated interaction terms of various orders, provided the

independent and full dependence models employ the same estimability constraints. Equivalently,

Ŷ D
a − Ŷ I

a is the fitted value for sequence a when the residuals from the independence model are

fitted with an ANOVA model containing the interaction terms of the full dependence model. This
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fact makes it easy to compute an estimated standard error for the difference and, hence, for the

dependence probability ratio itself.

3.3 Comparing Binding Affinities of Two Sequences

Fitting the full dependence model also allows us to compare the binding affinities of different

DNA sequences. Specifically, for any pair of sequences that may interest an investigator, say

a1 = {a11, · · · , a1l} and a2 = {a21, · · · , a2l}, we can estimate the ratio of their binding probabilities

as follows.

Relative Affinity =
P̂ D
a2

P̂ D
a1

= exp(Ŷ D
a2

− Ŷ D
a1

) (5)

We refer to this ratio as the relative affinity of sequence a2 to sequence a1. The difference Ŷ D
a2

− Ŷ D
a1

is a comparison of two ’treatments’, a1 and a2, in the usual experimental sense. Hence, an estimated

standard error can be constructed for the difference in the conventional manner for comparisons

and this standard error, in turn, can be converted into one for the relative affinity itself.

The reference sequence for calculating relative affinities, namely, sequence a1 in (5), may be

chosen in many ways. One choice that we use in our case application is to select that sequence for

which Y D
a1

is largest among all sequences. Then the relative affinity for any sequence will describe

the probability of binding for that sequence relative to the ’most successful’ sequence.

3.4 Conditional Probability of Binding

A closely related measure of interest is the estimated conditional probability of binding among

a reference set of sequences. If B = {b1, . . . , bm} is a set of m distinct sequences of interest,

where bj = (bj1, · · · , bjl), then the following formula gives the estimated conditional probability

that sequence bj ∈ B will be the actual bound sequence in a given binding event, conditional on

the binding being one of the sequences in B.

P̂ (bj |B) =
exp(Ŷ D

bj
)∑m

i=1 exp(Ŷ D
bi

)
(6)

4. Case Application

4.1 The Experiment

As a case application, we consider the study described in Bulyk et al (2001) and Bulyk, Johnson

and Church (2002). In this study, a wild-type and four mutant Zif268 zinc fingers were bound to

microarrays. The mutant variants are abbreviated here as KASN, RGPD, LRHN and REDV. The

DNA spotted onto the the microarrays were 37 bp long with only the three central nucleotides

varying. It was the 43 = 64 possible arrangements of these three central nucleotides that were
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examined in this study. Nine replicates were spotted on the slide for each triplicate sequence with

the exception of the KASN variant where only five replicates were used.

DNA fluorescence intensities were obtained for all possible triplets of nucleotides as follows.

R-phycoerythrin was used for detection of bound proteins. It is an excitable protein which emits

fluorescently. Except for measurement variability, the fluorescence level will be directly proportional

to the number of bound proteins. The microarrays were scanned at multiple laser power settings to

ensure that fluorescence intensities remained below the saturation level of the microarray scanner.

Background levels were first subtracted from all raw signal intensities. Then, the relative signal

intensity of each of the spots within a replicate was calculated as a fraction of the highest signal

intensity for a spot containing one of the 64 different 37 bp sequences. To normalize for possible

variability in the DNA concentrations of the different DNA samples that were spotted onto the

microarrays, each of the average relative signal intensities from zinc finger phage binding was di-

vided by the respective average relative signal intensities from SybrGreen I staining. The resulting

measure, referred to as frac SI (fractional signal intensity) in Bulyk et al (2001), is proportional

to binding affinity. Hence, for our purposes here, we can take Y = log(frac SI) as our response

variable in the ANOVA model.

4.2 Two-Stage ANOVA

To illustrate the methodology, we consider the REDV variant. According to Choo and Klug

(1994), nucleotide sequences GCG and GTG were used to select this variant from the phage display

library. We thus expect these sequences to exhibit high binding probabilities. We wish to establish

that this is the case and also to check for probabilistic binding dependence.

Proceeding with the two stages of analysis, we first estimate the independence ANOVA model

using (3) and then the full dependence ANOVA model using (2). Table 2 shows the combined

ANOVA table. Lines 1-4 and 11 give the ANOVA results under independence. Lines 1-3, 5-7 and

9-11 give the ANOVA results under full dependence. For the moment, ignore the intermediate

Error (level 2) given in line 8. The results for the two ANOVA models can be combined in a single

table here because adding the second- and third-order interaction effects a1 ∗ a2, a1 ∗ a3, a2 ∗ a3 and

a1 ∗ a2 ∗ a3 to the model leaves the sums of squares for the main effects a1, a2 and a3 undisturbed.

This reflects the orthogonality of the sets of estimates for main effects and interaction coefficients

which results from the balanced design used in the study. Indeed, the addition of each set of

interaction terms of successively higher order leaves the preceding ANOVA estimates and sums of

squares unchanged.

Checking the statistical results in Table 2, it is found that all F -statistics for the interaction sums

of squares are large (these are not shown in the table). In this case the F -statistics are computed
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using MSE for Error (level 3) as a divisor. The P -values for these F -statistics all equal 0.0000 to

four decimal places, from which we may infer that one or more interaction terms of each order are

non-zero. The result confirms binding dependence among both pairs and triplets of nucleotides for

this variant. We can say, therefore, that no intermediate order of independence is present and that

the binding probability depends on the complete central triplet, imbedded within the 37 bp string

of nucleotides.

4.3 Relative Affinities: REDV Variant

We now look at some relative affinities of sequences for the REDV variant, using the most

successful sequence GCG as the reference. The six largest of these relative affinities are shown

in Table 3(a). The fitted values for the full dependence model reveal that sequence GCG has a

binding probability that is almost double that of GTG and more than five times that of GAG,

the two sequences with the next strongest affinities. Among the top six sequences, the estimated

conditional probability that GCG will bind in lieu of any of the other five top contenders can be

calculated from (6) to be 0.46. Estimated standard errors can also be calculated for these relative

affinities as well as approximate confidence intervals. For example, the relative affinity for GTG

(with GCG as the reference) has the approximate 95 percent confidence interval [0.542, 0.754].

For sequences whose fitted values under the full dependence model are at the signal detection

threshold, we find that the relative affinity is 0.0109. The true binding affinities for these sequences

are likely to be at or below the limit of detection of the experiment but we cannot establish their

values with precision when the signal intensity is below the threshold.

4.4 Dependence Probability Ratios: REDV Variant

We next look at dependence probability ratios to see the impact of dependence for different

sequences. Recall that this ratio compares the estimated binding probabilities under the full depen-

dence and independence ANOVA models – see (4). The three largest and three smallest of these

ratios are shown in Table 4 for the REDV variant. The table also shows the relative affinities for

these sequences to assist with interpretation. To illustrate the results, the ratio 7.341 for sequence

GTG indicates that the estimated binding probability is a multiple 7.341 higher than expected if

the three nucleotides were to occur independently with their average frequencies at the three posi-

tions in the sequence. Thus, this sequence has a binding probability that is larger than expected

under the independence assumption and, hence, exhibits binding attraction. Similarly, the ratio

0.213 for sequence TCG indicates that the estimated binding probability is a multiple 0.213 lower

than expected under independence and, hence, reflects binding aversion. Estimated standard errors

can also be calculated for these dependence probability ratios as well as approximate confidence

intervals. For example, the approximate 95 percent confidence interval for the ratio for sequence
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GTG is [6.531, 8.251].

We note for the smallest ratios in Table 4 that the estimated relative affinity is at the detection

level, 0.0109. Thus, true binding affinities for such sequences are likely at or below the detection

threshold and binding aversion would appear to be at an extreme in these instances.

4.5 Results for Other Mutant Variants and Wild-type

We have also conducted similar analyses for the other three mutant variants and the wild-type.

In all cases, dependencies of all orders were found to be significant (the ANOVA tables are not

presented here). Table 3 (b)-(e) show the sequences with the largest relative affinities for each case

(with the most successful sequence as the reference). The mutants LRHN and KASN had been

isolated repeatedly (Choo and Klug, 1994) after independent sets of in-vitro selections by using

many different 3-bp binding sites for the second of three zinc fingers (ACT, AAA, TTT, CCT,

CTT, TTC, AGT, CGA, CAT, AGA, AGC, and AAT). Therefore, since the in-vitro selections

resulted in only poorly characterized sequence specificities for these mutants, the protein-binding

microarray approach was used to determine their binding-site preferences (Bulyk et al, 2001). KASN

appears to be quite unspecific with relative affinities that are fairly large across many sequences, as

illustrated by the six sequences listed in Table 3(b). The results in Table 3(c) show that LRHN is

quite specific for TAT with other sequences showing up with lower, but material, relative affinities.

Like the REDV variant, the RGPD variant was selected from the phage display library using two

DNA sequences that were almost identical. For RGPD, these sequences were GCG and GCT .

The aim was to see if the microarray technology could distinguish proteins with similar binding-

site preferences. The results suggest it can. The results for RGPD in Table 3(d) confirm that the

experiment has correctly identified the binding-site preferences, although GCT has a markedly lower

affinity than GCG and CCG has about the same affinity as GCT. Both GCT and CCG differ by

one nucleotide from GCG. Finally, the results for the wild-type protein in Table 3(e) show specific

preferences for TAG and TGG.

We have also conducted a study of the dependence probability ratios for the other mutants and

wild-type but do not report the results here as they are qualitatively similar to what we have shown

for the REDV variant.

4.7 Checking the Error Assumptions

The error terms in (1) must be independent and identical centered normal random variables for

ordinary least squares fitting to be efficient and for conventional normal-based tests, such as the F

test, to apply. We have examined normal probability plots and other diagnostic plots for residuals

from the full dependence ANOVA model (2) in the case application. These plots give confidence

that the error assumptions are reasonable in this case application. Some moderate distortion of
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the normal probability plots (except for the KASN variant) is produced by the presence of multiple

readings at the detection threshold for some sequences. The result is a saw-toothed linear pattern

for the plot, such as that for REDV variant shown in Figure 1.

The presence of non-zero residuals in this case application is due entirely to the presence of

replicated spots for the 64 sequences. Without replication, the full dependence model would be a

saturated model and fit the 64 intensity readings exactly. We note that a set of main effects for

replicates does not account for significant variation when added to the model (P -value = 0.852).

The detection threshold for array technology introduces the problem that small affinities are

censored at this threshold. ANOVA estimation with a left censored response might be employed to

overcome this artifact. We have not taken into account the censored nature of intensity readings

below the detection threshold. Estimation methods for censored responses have been employed and

give only slightly different results in this study.

5. Strategies for Studying Dependence in Large-scale Studies

Large-scale microarray investigations of protein binding require special strategies for the sta-

tistical component of the work because of the potentially large number of parameters in the full

model. Table 1 shows the escalating numbers as the nucleotide sequence lengthens. We now discuss

some of these strategies and show that large-scale studies are indeed manageable.

In a balanced design, as we have noted already, the addition of each set of interaction terms

of successively higher order leaves the preceding estimates and sums of squares unchanged. This

observation offers the simple strategy of exploring successively higher orders of dependence without

necessarily estimating the full model. The fitting of the interaction effects of each order can be done

in separate ANOVA computer runs by using residuals from the preceding level to fit the next level.

As computerized ANOVA routines can handle several hundred parameter estimates at once, it can

be seen from Table 1 that interaction effects of at least order 2 can be estimated for nucleotide

sequences as large as l = 8. With the use of various automated model selection routines, such as

stepwise regression, and sequence decomposition strategies, even larger sequences can be handled.

Tests of dependence can be conducted at intermediate stages of estimation by using either an

intermediate MSE or the MSE for pure error, denoted later by MSPE. Table 2 illustrates the us of an

intermediate MSE. Observe that if only the main effects and second-order interactions were included

in the ANOVA model, an ANOVA table containing lines 1-3, 5-8 and 11 could be constructed. The

MSE for Error (level 2) will be an upper bound on the MSPE, which is Error (level 3) in line 10 here.

F -tests based on an inflated MSE value, if significant, give corect test conclusions. An alternative

approach for the F -tests is to calculate the MSPE directly from the full (saturated) model without

estimating the individual model parameters. With replication, the fitted value of the full ANOVA
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model for a sequence is the mean reading taken over the set of replicates for that sequence. These

mean values can be computed without estimating the individual ANOVA parameters. MSPE is

the pooled variance of the replicated readings about their respective means and is quite easy to

compute.

For studies involving very long sequences, the use of fractional factorial designs might be ad-

visable for exploring high-order interactions without constructing numerous arrays. The basic idea

would be that with a selective choice of sequences for the arrays, all sets of interaction terms up to

a given order (less than the full order) could be estimated from the ANOVA model. Thus, some

partial degrees of dependence could be studied without using all 4l sequences.

The theory of log-linear models provides strategic guidance for exploring dependencies and

for decomposing the problem of discovering dependencies (more,precisely, independencies) in large-

scale studies. We now give two theoretical results that illustrate how one can obtain insight into the

dependence structure. For the presentation of these results, we consider, without loss of generality, a

simple partition of sequence a as follows a = a1a2 where a1 = {a1 · · ·ar} and a2 = {ar+1 · · ·al}. In

other words, we break the nucleotide sequence into two segments of length r and l− r, respectively,

with r < l.

(a) If segments a1 and a2 act independently in determining binding for the target protein then

we have

ln Pa = ln P (a) = ln P (a1a2) = ln [P (a1)P (a2)] = ln P (a1) + ln P (a2) (7)

Each of ln P (a1) and ln P (a2) can be expanded in main effects and interaction effects as in

(2). We then can see that the ANOVA model represented by the sum ln P (a1)+ lnP (a2) will

not have any interaction effects for nucleotides that are drawn from both a1 and a2. Thus,

the non-zero interaction effects in (2) give an immediate picture of the dependence structure

for the binding of the target protein.

(b) Conditional independence is also potentially important. For example, if the nucleotides of

segment a1 = {a1, . . . , ar} bind independently, provided segment a2 = {ar+1, . . . , al} is in

place, then we have

ln P (a1|a2) =
r∑

i=1

ln P (ai|a2). (8)

In this case, among the subset of sequences having segment a2, the independence ANOVA

model (3), with index l replaced by r, will fit the log-intensity data.
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Table 1. Numbers of main-effect and interaction parameters of different orders for the full-

dependence ANOVA model.

Sequence Total Main Interaction Effects
Length Parameters Effects 2nd 3rd 4th 5th 6th 7th 8th

2 16 6 9
3 64 9 27 27
4 256 12 54 108 81
5 1,024 15 90 270 405 243
6 4,096 18 135 540 1,215 1,458 729
7 16,384 21 189 945 2,835 5,103 5,103 2,187
8 65,536 24 252 1,512 5,670 13,608 20,412 17,496 6,561

Table 2. ANOVA table for the REDV mutant variant, showing intermediate error SS, df and MS

values for main effects and second-order interaction terms.

Line Source SS df MS
1 a1 102.51 3 34.170
2 a2 87.61 3 29.205
3 a3 125.42 3 41.806
4 Error (level 1) 345.90 566 0.61113
5 a1 ∗ a2 57.69 9 6.410
6 a1 ∗ a3 164.49 9 18.277
7 a2 ∗ a3 16.77 9 1.863
8 Error (level 2) 106.94 539 0.19840
9 a1 ∗ a2 ∗ a3 90.64 27 3.357
10 Error (level 3) 16.30 512 0.03183
11 Total 661.44 575 1.150
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Table 3. Estimated relative affinities for selected sequences for each of four mutant variants and

the wild-type. Relative affinity here is the ratio of the fitted binding probability for the sequence

to the largest fitted binding probability for any sequence.

(a) REDV (b) KASN (c) LRHN (d) RGPD (e) wild-type
Est. Est. Est. Est. Est.

Seq. Rel. Aff. Seq. Rel. Aff. Seq. Rel. Aff. Seq. Rel. Aff. Seq. Rel. Aff.
GCA 0.0993 CGT 0.8688 TGT 0.3751 GTG 0.1664 GAG 0.1435
GGG 0.1134 ACT 0.9265 CAT 0.3990 GCC 0.1994 AGG 0.2272
CCG 0.1617 TAT 0.9401 AGT 0.4318 GCA 0.2053 CGG 0.3119
GAG 0.1808 ATT 0.9605 GAT 0.4923 CCG 0.3146 GGG 0.3547
GTG 0.6393 AAT 0.9944 AAT 0.5651 GCT 0.3907 TAG 0.7170
GCG 1.0000 CCT 1.0000 TAT 1.0000 GCG 1.0000 TGG 1.0000

Table 4. Dependence probability ratios for selected sequences for the REDV variant. Estimated

relative affinities are also shown for the same sequences. The dependence probability ratio compares

the estimated binding probabilities of a sequence under the full dependence and independence

ANOVA models.

Nucleotide Type of Dependence Estimated
Sequence Binding Probability Ratio Relative Affinity

TCG Aversion 0.213 0.0109
CTG 0.270 0.0109
GTC 0.347 0.0109
ATA Attraction 4.876 0.0566
GCG 6.395 1.0000
GTG 7.341 0.6393
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