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Sequence-specific binding by transcription factors (TFs) interprets regulatory information encoded in the
genome. Using recently published universal protein binding microarray (PBM) data on the in vitro DNA
binding preferences of these proteins for all possible 8-base-pair sequences, we examined the evolutionary
conservation and enrichment within putative regulatory regions of the binding sequences of a diverse library
of 104 nonredundant mouse TFs spanning 22 different DNA-binding domain structural classes. We found that
not only high affinity binding sites, but also numerous moderate and low affinity binding sites, are under
negative selection in the mouse genome. These 8-mers occur preferentially in putative regulatory regions of
the mouse genome, including CpG islands and non-exonic ultraconserved elements (UCEs). Of TFs whose PBM
“bound” 8-mers are enriched within sets of tissue-specific UCEs, many are expressed in the same tissue(s) as
the UCE-driven gene expression. Phylogenetically conserved motif occurrences of various TFs were also
enriched in the noncoding sequence surrounding numerous gene sets corresponding to Gene Ontology
categories and tissue-specific gene expression clusters, suggesting involvement in transcriptional regulation of
those genes. Altogether, our results indicate that many of the sequences bound by these proteins in vitro,
including lower affinity DNA sequences, are likely to be functionally important in vivo. This study not only
provides an initial analysis of the potential regulatory associations of 104 mouse TFs, but also presents an
approach for the functional analysis of TFs from any other metazoan genome as their DNA binding preferences
are determined by PBMs or other technologies.
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Introduction DNA binding sequence “words” (“k-mers”); PWMs are non-ideal as

they typically are based on only a relatively small set of binding site

The interactions between transcription factors (TFs) and their DNA
binding sites are an integral part of the regulatory networks within
cells. Recent computational studies in Saccharomyces cerevisiae [1]
and in Drosophila embryonic development have suggested that low
affinity TF binding sites are important in gene regulation [2]. However,
those studies utilized position weight matrix (PWM) models of TF
binding sites, rather than directly measured preferences of TFs for

Abbreviations: AUC, area under receiver operating characteristic curve; GO, Gene
Ontology; MGI, Mouse Genome Informatics; PBM, protein binding microarray; PWM,
position weight matrix; TF, transcription factor; TSS, transcription start site; UCE,
ultraconserved element; UTR, untranslated region.
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sequences, either inferred or directly measured, and in general do not
capture well the full range of binding preferences of TFs [3-6].

The DNA binding specificities of 104 known and predicted mouse TFs
from 22 different DNA binding domain (DBD) structural classes found in
metazoan TFs were determined recently [6] using the universal [7]
protein binding microarray (PBM) technology [8,9]. Those PBM data are
the first high-resolution binding specificity data for the vast majority of
those 104 TFs; universal PBMs provide a complete look-up table of the
relative binding preference of a TF for each gapped and ungapped 8-bp
sequence variant. For each of the 8-mers in the dataset for each protein,
its PBM enrichment score (E-score) [7] was reported [6]. The E-score is
related to the area under a receiver operating characteristic curve
(AUC) and scales from + 0.5 (best) to —0.5 (worst) [7]. Comparisons
to Ky data [7,10] indicated that 8-mers with higher normalized PBM
signal intensities, and thus with higher E-scores, are generally bound
with higher affinity [6,7]. From the individual 8-mer data, DNA
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binding site motifs were derived [6] using the Seed-and-Wobble
algorithm [7,11].

In addition, in that study [6] many TFs were found to bind two
distinct sets of high-scoring 8-mers. For each such TF, a secondary
motif was identified that captured DNA binding preferences not
represented well by the primary motif. A linear regression approach
was used to learn weighted combinations of PWMs generated from
several different motif finding algorithms; the binding profiles for the
vast majority of the proteins were represented best by more than one
PWM. PWMs are of practical utility because they are employed by
numerous genome scanning tools to identify candidate regulatory
elements [12].

While those PBM data provided rich, high-resolution profiles of
the in vitro DNA binding specificities of 104 mouse TFs, the in vivo
functional relevance of those binding site sequences was unexplored
for all but 2 of the TFs [6]. Here, we analyzed those DNA binding
specificity data to determine the potential utility of in vitro binding
data in computational genome analyses aimed at identifying
candidate in vivo regulatory associations [13]. In particular, we
examined whether TF-binding 8-mers are evolutionarily conserved
and whether they are enriched within regions of the genome that are
likely to have cis-regulatory function. We report that:

PBM “bound” 8-mers are enriched within various classes of putative
regulatory regions, including CpG islands and non-exonic ultra-
conserved elements (UCEs) [14].

Non-exonic UCEs exhibit the greatest fold-enrichment of high
affinity 8-mers for TFs of the homeodomain and BRIGHT classes.
Lower affinity homeodomain and BRIGHT class 8-mers are also
enriched within non-exonic UCEs.

Of TFs whose PBM “bound” 8-mers are enriched within sets of
tissue-specific UCEs, many are expressed in the same tissue(s) as
the UCEs.

Both high and lower affinity 8-mers appear to be under negative
selective pressure across mammalian genomes as compared to
putatively non-binding 8-mers.

Overall, secondary motif 8-mers are conserved as strongly as
primary motif 8-mers in both low and high CpG regions.

Putative target genes of most TFs are enriched for particular Gene
Ontology functional categories or for tissue-specific gene expression
clusters.

Taken together, our results provide evidence supporting that
lower affinity TF binding sites, as determined from PBMs, serve
evolutionarily conserved, in vivo regulatory functions.

Results

PBM “bound” 8-mers are enriched within putative regulatory regions,
including CpG islands and non-exonic UCEs

We first examined whether 8-mers bound strongly in vitro in
PBMs by any of the 104 previously characterized mouse TFs [6] are
enriched in putative regulatory regions of the mouse genome,
including CpG islands, UTRs, non-exonic UCEs, and intergenic or
intronic regions, considering ancestral repeats as a negative control.
Considering 8-mers bound (E>0.40, 0.43, or 0.45) by any of the 104
TFs, the absolute overall enrichment or depletion of TF-binding 8-mer
occurrences in these regions was quite minor, with enrichment of
these 8-mers in noncoding regulatory regions in general (P<10~°,
Wilcoxon-Mann-Whitney test) and depletion in UTRs (P<10~°) and
ancestral repeats (P<10~'2) (Supplementary Figure S1). We note
that these P-values may be inexact because the overlapping 8-mers
are not necessarily independent.

CpG islands were particularly enriched for binding sites for E2F
(1.12-fold at E>0.40) and ETS (1.26-fold at E>0.40) proteins (Fig. 1A,
Supplementary Figure S2); see below). Chromatin immunoprecipita-

tion analysis has shown that in both normal and tumor cell lines, most
in vivo binding sites for E2F1, E2F4, and E2F6 are located within 2 kb of
a transcription start sites [15], where CpG dinucleotides are enriched
[16], and CpG methylation has been shown to differentially regulate
the response of distinct E2F elements at various promoters to different
E2F family members [17].

Within non-exonic UCEs, we found the greatest fold-enrichment
of “high” affinity 8-mers (E>0.45) for TFs of the homeodomain
(P<10~22) and BRIGHT (P<10~ ') classes (Fig. 1B); this enrichment
is observed even when we considered only the “moderate” affinity 8-
mers (0.40<E<0.45) (Fig. 1B; Supplementary Table S1). Our finding
for the homeodomain class supports prior observations of enrich-
ment of matches to a generalized homeodomain motif within UCE-
spanning sequences [18,19].

Previous large-scale testing of these UCEs [20,21] and human-
pufferfish conserved noncoding elements [20] in a transgenic mouse
enhancer assay showed that many of them drive tissue-specific gene
expression, primarily in the embryonic nervous system [20,21]. One of
these studies also found that noncoding UCEs and extremely
constrained human-rodent elements are highly enriched for neigh-
boring genes involved in regulation of transcription, development,
and nervous system development [21]. Taken together, these results
suggest that UCEs may be fine-tuned to respond to the transcriptional
regulatory state of cells, in particular to the levels of homeodomain
and BRIGHT class TFs utilized in development and differentiation.

Evidence for functional roles of PBM “bound” 8-mers enriched within
highly conserved, putative neuronal regulatory regions

To begin to address the hypothesis that PBM “bound” 8-mers in
UCEs have an in vivo regulatory relevance, we examined whether the
corresponding TFs are expressed in the same tissue(s) where
expression studies of UCE-driven transgenes suggest they may be
important. For example, several studies have shown that the Hox
genes control motor neuron identity [22]. Consistent with anatomic
locations of motor neurons, we observed enrichment (p<1.2x1073,
Fisher's Exact test) of Hoxa3 PBM “bound” 8-mers (E>0.45) within
UCEs and highly constrained genomic regions [20] driving expression
in the cranial nerve, hindbrain, midbrain, heart, limbs, neural tube,
trigeminal nerve and dorsal root ganglion, as compared to 10
independent sets of sequences generated by a 1st-order Markov
model (i.e., 10 sets of sequences corresponding to the same UCEs
shuffled at the dinucleotide level).

To search systematically for correlations between TF and UCE-
driven gene expression, for PBM “bound” 8-mers (E>0.45) enriched
within UCEs and highly constrained genomic elements [20], we
examined the expression patterns of the 104 TFs, as determined by
recent in situ hybridization studies in the mouse embryonic brain
[23,24], within the same tissues as those in which the above
constrained genomic elements drove reporter gene expression at
E11.5 [20,21]. We manually annotated the expression of TFs in the
developing mouse brain in the Allen Institute's publicly available
developing mouse brain in situ hybridization images [24] and the MGI
database (http://www.informatics.jax.org/), where such published
annotations were not available. The correlations we found between TF
and UCE-driven gene expression, for PBM “bound” 8-mers (E>0.45)
enriched within UCEs and highly constrained genomic elements, are
described below. A full listing of PBM 8-mer enrichment results for all
104 TFs and all examined UCE expression patterns is provided in
Supplementary Table S2.

Gata3 is expressed in the lens at E10.5 [23], and its “bound” 8-mers
are significantly enriched (p<0.05, Fisher's Exact test) in enhancers
driving expression in eyes at E11.5 [21] (Fig. 2). Nr2f2 and Six6 are
expressed in the optic vesicle at E10.5 [23], and their “bound” 8-mers
are likewise enriched in enhancers driving expression in eyes at E11.5
[21]. Nr2f2 is also expressed in all neural tissues at E11.5, including the
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Fig. 1. Enrichment of particular TFs' 8-mers within putative regulatory regions. (A) CpG islands are enriched for PBM “bound” 8-mers for E2F and ETS proteins. Results for 8-mers
bound at E>0.43 or E>0.45 are shown in Supplementary Figure S2. (B) “Moderate” (0.40 <E<0.45) and “high” (E>0.45) affinity 8-mers of TFs in the BRIGHT and homeodomain
classes are enriched within non-exonic UCEs as compared to shuffled sequences generated to have the same dinucleotide content. In both panels, “score” and P-values are as

described in Supplementary Fig. S1.

neural tube, dorsal root ganglion, and optic nerve [25], and its “bound”
8-mers are likewise enriched in enhancers driving expression in the
neural tube, dorsal root ganglion, forebrain, midbrain, hindbrain, and
eye at E11.5. Numerous TFs-E2f2, Foxjl, Foxa2, Foxk1, Gata3, KIf7,
Mafb, Mtfl, Nr2f2, Rfx3, Rfx4, Sox4, Sox5, Sox14, Sox21, Tcf3, Tcf7,
Tcf712, and Zic3-are expressed in the midbrain at E13.5 [23], and their
“bound” 8-mers are enriched in enhancers driving expression in the
midbrain at E11.5 (Fig. 2). A number of these and other TFs-Foxa2,
Foxj1, Gata3, Hoxa3, KIf7, Mafb, Mtf1, Mybl1, Rara, Rfx3, Rfx4, Sox4,
Sox5, Sox7, Sox21, Tcf3, Tcf712, and Zic3-are expressed in the hindbrain
at E13.5 [23], and their “bound” 8-mers are enriched in enhancers
driving expression in the hindbrain at E11.5 [21] (Fig. 2). The Allen
Institute's in situ hybridization data support these findings, with
expression of T¢f712 [26,27] and FoxaZ2 in the midbrain at E11.5, and of
Foxa2, Hoxa3, and Tcf7I12 in the hindbrain at E11.5 [24]; Allen Institute
in situ hybridization images were not available at E11.5 for the other

TFs. Prior studies support these correlations for enhancer activity at
E11.5 for a number of the other TFs, including Gata3 [28,29], Sox1 [30],
and Zic3 [31] in the midbrain and hindbrain, and for Kif7, which is
ubiquitous at E10.5 [32], in the hindbrain.

While the enhancer expression data [20,21] and the TF expression
data from Gray et al. [23] were obtained at different embryonic time
points (E11.5, and E10.5 or E13.5, respectively), these data suggest
that these TFs may regulate gene expression through these UCEs in
these embryonic tissues. There is literature evidence supporting at
least some of these hypotheses, as follows. Foxa2 homozygous null
zebrafish exhibit severe reduction of prospective oligodendrocytes in
the midbrain and hindbrain [33], and Foxa2 regulates midbrain
dopaminergic neuron development in mouse embryos [34]. Mafb is
involved in both segmentation and specification of anteroposterior
identity in the hindbrain [35]. AP-2 (Tcfap2a) knockout mice exhibit
failure in cranial neural tube closure and defects in cranial ganglia
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development [36]. Thus, PBM data suggest putative links between
transcriptional enhancers and specific TFs, including some with
known regulatory functions as described above, that may mediate
gene expression by binding within those enhancers. Analysis of over-
representation of combinations of TFs' binding site sequences in the
future may suggest combinatorial, co-regulatory TF interactions and
associated cis regulatory grammars within UCEs. Further experiments
will be required to confirm direct binding of the TFs to their putative
target regulatory regions.

Evolutionary conservation properties of PBM “bound” 8-mers

8-mers that score highly in a PBM experiment represent the
preferred in vitro DNA binding sites for that TF. We reasoned that if
genomic occurrences of those 8-mers are functional in vivo, and if
the TFs in our dataset capture a substantial fraction of the diversity
in TF binding sites, then selective pressure would result in those 8-
mers being evolutionarily conserved as compared to other 8-mers.
We therefore examined the conservation properties of 8-mers
within the non-protein-coding regions 10 kb upstream to 10 kb
downstream of the transcription start sites of RefSeq genes
considering sequence alignments of 12 mammalian genomes. We
further subdivided the regions into those with high versus low CpG
content in their sequence, after inspecting the bimodal distribution
generated by the scoring function over all of the RefSeq promoters,
as defined by Mikkelsen et al. [37]. We utilized SCONE scores for the
substitution rates of individual nucleotides in the genome [38] to
calculate substitution rates for all 8-mers within the examined
genomic regions separated into low CpG and high CpG regions
(Supplementary Figure S3). An 8-mer with a low average substitu-
tion rate can be considered to be more conserved within these
regions than an 8-mer with a higher average substitution rate.

Considering as a whole the set of 8-mers with a maximum E-score
above 0.45 for any of the 104 TFs, represented by 111 protein constructs,
to be “high” affinity binding sites for at least one TF (i.e., 8-mers that
have low E-scores for some TFs but that have E>0.45 for at least one TF
were concerned as “high” affinity binding sites), we found that these 8-
mers on average exhibited lower substitution rates than the average of
all other 8-mers (P<10~%° for low CpG regions; P<10~ 7" for high CpG
regions, two-sample t-test for samples with unequal variances and
Satterthwaite's approximation for the effective degrees of freedom).
Moreover, we found that the average substitution rates for 8-mers
within the high CpG regions are uniformly lower than the ones within
the low CpG regions (Supplementary Figure S3), which suggests that
despite the higher mutation rate of CpG dinucleotides [39], on average
there has been stronger selective pressure to maintain TF binding sites
within high CpG regions. This is consistent with recent observations
that CpG islands display high levels of sequence conservation as
compared to various other putative regulatory regions [38].

In addition, we observed a trend between 8-mer conservation
rates and the relative binding affinities of TFs to those 8-mers. When
we binned the 8-mers into “high” (maximum E>0.45 over all 104
TFs; 4,787 8-mers fell into this bin), “moderate” (0.40<E<0.45; 6,678
8-mers fell into this bin), “low” (0.35<E<0.40; 6,522 8-mers fell into
this bin), “very low” (0.30<E<0.35; 5,595 8-mers fell into this bin),
and “nonspecific” (—0.50<E<0.30; 9,314 8-mers fell into this bin)
categories, we found that the within-group mean and median 8-mer
substitution rates decrease monotonically with increasing binding site
affinity within high CpG regions (Fig. 3A) and low CpG regions (Fig.
3B). For example, the mean 8-mer substitution rate of the “high”
affinity category is significantly lower than that of the “moderate”
affinity category (P<1x10~3° for low CpG regions, and P<1x10~8
for high CpG regions; two-sample t-test for samples with unequal
variances and Satterthwaite's approximation for the effective degrees
of freedom). Similarly, the “very low” affinity category is significantly
different from the “nonspecific” category (P<1x10~ ' for low CpG
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Fig. 3. The median 8-mer substitution rate decreases monotonically with increasing
binding site affinity. All bins of 8-mers—*“high” affinity (0.45<E<0.50), “moderate”
affinity (0.40 <E<0.45), “low” affinity (0.35 <E<0.40), “very low” affinity (0.30 <E<0.35),
and “nonspecific” (E<0.30) categories—within (A) high CpG regions and (B) low CpG
regions exhibited mean substitution rates significantly different from each other (P<0.05,
Tukey's Honestly Significant Differences test). In each box plot, the central bar indicates the
median, the edges of the box indicate the 25th and 75th percentiles, and whiskers extend
to the most extreme data points not considered outliers.

regions, and P<1x 10~ >° for high CpG regions). These results suggest
that not only high affinity binding sites, but also numerous moderate
and low affinity binding sites, are under negative selection in the
mouse genome. We did not find any mononucleotide composition
biases that could explain this observed trend. We performed this
analysis for various genomic sizes around TSS (1 kb upstream, 2 kb
upstream, + 1 kb, +2 kb) and observed similar trends after likewise
subdividing the regions into low and high CpG regions. Alternatively,
it is possible that some of the low affinity binding sites putatively
under selection for binding by these 104 TFs are actually conserved
high affinity binding sites for TFs either not included in, or not highly
similar to, those in this set of 104 TFs [6].

A major finding from the recent analysis of the DNA binding
preferences of these 104 TFs was the widespread existence of a
secondary motif that represented 8-mers bound by the particular TF
but not explained by the primary DNA binding site motif. Evidence for
the in vivo usage of 8-mers belonging to the primary, and separately
the secondary, motifs was provided by their enrichment towards the
centers of genomic regions occupied by the corresponding TFs (Hnf4a,
Bcl6b) [6]. To investigate the functional importance of secondary
motif 8-mers for all 43 proteins which exhibited a significant
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Table 1

Secondary motif 8-mers are just as evolutionarily conserved as primary motif 8-mers.
The top 100 8-mers corresponding to the primary versus secondary motifs were binned
into affinity categories according to E-scores, and assessed separately within low versus
high CpG regions for evolutionary conservation. AUC non-parametric rank statistics
were calculated to assess whether primary motif 8-mers rank higher than secondary
motif 8-mers, with 8-mers ranked according to substitution rates. We found no
significant difference in the substitution rates of 8-mers belonging to the primary
versus secondary motifs at Bonferroni-corrected P<0.05; P-values were calculated by
the Wilcoxon-Mann-Whitney two-sided rank sum test, with modified Bonferroni
correction for multiple hypothesis testing to account for comparisons of primary and
secondary motifs across 10 bins.

Affinity category

Low CpG regions (AUC)

High CpG regions (AUC)

High (E>0.45) 0.512 0.511
Moderate (0.40<E<0.45) 0.467 0.496
Low (0.35<E<0.40) 0.555 0.596
Very low (0.30<E<035)  0.537 0.536
Nonspecific (E<0.30) 0.521 0.483

secondary motif (seed 8-mer had E>0.45) distinctly different from
the primary motif [6] (Supplementary Table S3), here we examined
the evolutionary conservation of the top 100 8-mers belonging to the
primary versus the secondary Seed-and-Wobble motifs. 8-mers that
matched both the primary and the secondary motifs were removed
from consideration.
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Although the primary motif by definition corresponds to the motif
generated from the highest ranking 8-mer in the PBM data, the set of
8-mers represented by the secondary motif can rank quite similarly to
those belonging to the primary motif or can be of distinctly lower
affinity [6]. To control for potential affinity bias in the set of 8-mers
corresponding to the primary versus secondary motifs, we catego-
rized all primary and secondary motif 8-mers into “high,” “moderate,”
“low,” and “very low” categories, as described above. Considering 8-
mer data for all 43 of these proteins, we found that the secondary
motif 8-mers are just as evolutionarily conserved as the primary motif
8-mers in all 4 of these affinity categories (Table 1). Thus, secondary
motif 8-mers may be just as biologically important as primary motif 8-
mers. In the future, site-directed mutagenesis studies of primary
versus secondary motif 8-mers will need to be performed in vivo to
dissect the significance and gene regulatory roles of primary versus
secondary motif 8-mers.

To investigate further the conservation properties of “high”
affinity 8-mers, we considered each TF's “high” affinity 8-mers as
compared to those bound most weakly (E<0) for their conservation
within low versus high CpG regions. Although we observed an
overall trend that higher affinity 8-mers were more highly conserved
within both low and high CpG regions (Fig. 3), on an individual TF
basis we found that not all “high” affinity 8-mers (E>0.45) were
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Fig. 4. Evolutionary conservation properties of 8-mers of different E-scores. Scatter plot point density is indicated by the color bar in each panel. Horizontal lines at E= 0 and E = 0.45
are shown in each plot for convenience. For each of 104 TFs examined, the 8-mers belonging to either the “high” affinity category (0.45 <E<0.50) or those bound most weakly (E<0)
were ranked according to their substitution rates. Significance was assessed by both the area under the receiver operating characteristic curve (AUC>0.5; shown in each panel) and
the Wilcoxon-Mann-Whitney test (P<0.05); AUC>0.5 at P<0.05 indicates that “high” affinity 8-mers are significantly more highly conserved than the most weakly bound 8-mers
for a particular TF. For E2f2, the “high” affinity 8-mers exhibited greater conservation than the 8-mers bound most weakly by the TF within both the (A) low and (B) high CpG regions.
For Zic2, (C) within the low CpG regions the “high” affinity 8-mers exhibited greater conservation overall (P<0.05) than the 8-mers bound most weakly, while (D) within high CpG
regions the “high” affinity 8-mers were overall less conserved (P<0.05) than the most weakly bound 8-mers.
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conserved more highly than their weakest associated 8-mers (E<0).
Within the low CpG regions, for only 51 of the 104 TFs did the “high”
affinity 8-mers exhibit greater conservation overall (AUC<0.5 and P
<0.05, Wilcoxon-Mann-Whitney test) than their weakest 8-mers
(see E2f2 example in Fig. 4A). For 40 of the 104 TFs there was no
significant difference between the “high” affinity and the weakest 8-
mers, and for the remaining 13 TFs the “high” affinity 8-mers were
actually less conserved than their weakest 8-mers (see Zic2 example
in Fig. 4C). This trend was similar within the high CpG regions (see
E2f2 example in Fig. 4B, and Zic2 example in Fig. 4D). Only 34 TFs,
including E2f2, exhibited greater conservation of high affinity 8-
mers, as compared to their weakest 8-mers, within both the low and
high CpG regions.

Since the presence of 8-mers bound by other TFs among weak 8-
mers for the TF in question has the potential to account for a portion of
the unexpected high conservation of weak 8-mers, for each TF we
next removed from consideration any of its weak 8-mers that had
E>0.45 for any of the other 103 TFs. We then found that within the
high CpG regions, for 68 TFs high affinity 8-mers were more conserved
than the non-binding 8-mers on average; within the low CpG regions,
for 62 TFs high affinity 8-mers were more conserved than the non-
binding 8-mers on average. Within the high CpG regions, for 19 TFs
the non-binding 8-mers exhibited significantly higher conservation
rates on average than the high affinity binding 8-mers; within the low
CpG regions, these were 10 TFs. For 25 TFs there was no significant
difference (P>0.05) of conservation rates between high affinity and
non-binding 8-mers determined within the high CpG regions; there
were 40 such TFs within the low CpG regions. 44 TFs exhibited greater
conservation of high affinity 8-mers, as compared to their weakest 8-
mers, within both the low and high CpG regions. Despite the diversity
of TFs present in this collection of 104 TFs, it remains to be seen
whether the rest of this signal is due to other, as yet uncharacterized
TFs. Thus, analysis of TF binding site conservation as compared to non-
binding genomic sequence may underweight the significance of
conservation of some TFs' binding sites.

HLH factors: muscle-
related gene sets

E2F factors : chromatin-related gene sets

Association of PBM-derived motifs with specific functional categories
of genes

We next sought to further annotate these TFs and to predict their
functional categories of target genes, albeit coarsely, by searching for
enrichment of phylogenetically conserved motif occurrences in the
noncoding sequence surrounding numerous sets of candidate target
genes. We used the PhylCRM and Lever algorithms, which predict cis
regulatory modules, and infer cis regulatory codes, respectively (i.e.,
Lever searches for TF binding site motifs enriched within PhylCRM-
predicted cis regulatory modules for various input gene sets) [40]. In
analysis of the PBM data for the 104 nonredundant TFs we analyzed
here, it was found that multiple PWMs frequently capture the
binding preferences of a TF better than does a single PWM [6].
Therefore, for Lever analysis is this study, we used the PWMs
previously selected as best representing the DNA binding profiles of
each of these proteins [6].

We considered a broad range of mouse tissue-specific gene
expression clusters [41] and Gene Ontology (GO) annotation terms
[42] in assembling gene sets, which we sorted into low versus high
CpG content gene sets, yielding a total of 1371 gene sets. We
considered 20 kb of noncoding sequence surrounding the transcrip-
tion start site of each gene and 12 mammalian genomes in scoring
motif occurrences. Out of the 152,181 pairings of these gene sets with
each particular protein, we observed a total of 285 significant pairings,
involving a total of 45 gene sets and 88 TFs, at stringent significance
thresholds (AUC>0.8 and Q<0.01) (Fig. 5, Supplementary Table S4).
As expected [40], motifs for the myogenic TFs Myf6 (an HLH factor)
and Srf are enriched in various muscle-related GO categories such as
“sarcomere” and “muscle cell differentiation” (Fig. 5). The Irf proteins
are known regulators of interferon response and other aspects of
immune response and hematopoiesis [43]; our Lever results revealed
Irf3 to be associated with the GO category “cytokine biosynthetic
process” (Fig. 5), and Irf6 associated with a gene expression cluster
appearing in tissues that contain immune cells (e.g. spleen, lymph
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Fig. 5. Lever screen of GO categories. Heatmap color gradient indicates Lever AUC values. The columns have been restricted such that only those GO categories that exhibit significant
enrichment (AUC>0.8, Q<0.01) for at least one of the TFs' binding sites are shown. The columns (TFs) were sorted according to TF structural class, while the rows (GO categories)

were clustered hierarchically according to the AUC values calculated by Lever [40].
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node, bone marrow, lung, etc.) (Supplementary Figure S4). Other
associations represent potentially new findings. For example, the zinc
finger protein Sp4 is associated with a gene expression cluster
expressed primarily in brain, and reports in the literature [44]
indicate that mutants have defects in memory and that the gene itself
is expressed primarily in brain. Tcf3, which is best known for its
involvement in Wnt signaling [45], is associated with the GO category
“segmentation,” consistent with a recently described role in restrict-
ing induction of the anterior-posterior axis [46]. Zfp161 (ZF5), a
repressor of the human fragile X mental retardation 1 (FMR1) gene
[47], is associated with gene expression clusters primarily in the
embryo (Supplementary Figure S4).

Other independent lines of evidence also support the biological
relevance of our Lever results. First, we observed a tendency for the TF
itself to be co-expressed with the gene expression clusters for which
its binding sequences are enriched (P<0.001 at AUC> 0.6, Q<0.05, for
both low and high CpG gene sets; Supplementary Figure S5), likely
because transcriptional activation of the TF gene itself is required for
transcriptional activation of its targets. There is also a tendency for the
GO categories that Lever associates with each TF to be among the
categories in which the TF itself is annotated (P<0.04 and P<0.005 at
AUC>0.7, Q<0.05, for low and high CpG gene sets, respectively).
Some of the Lever results, however, may correspond to correct
associations of motifs to target gene sets, but for related TFs not
present in our set of 104 examined mouse TFs but with highly similar
DNA binding site motifs; for example, the association of the Myf6
motif with various GO categories pertaining to neuron development
may be due to neuronally expressed bHLH factors such as NeuroD
(Neurod1), Mash1 (Ascl1), Neurog1 or Neurog2 [48].

Discussion

Our analysis of the substitution rates of 8-mers across mammalian
genomes suggests that not only high affinity binding sites, but also
numerous moderate and low affinity binding sites, are more
evolutionarily conserved than nonspecific binding sites. Despite this
overall trend, the 8-mers bound most strongly by 27 of the 104 TFs we
examined did not exhibit significantly greater conservation in either
the low or high CpG regions. Many genomic occurrences of the
binding site sequences for such TFs may not be functional, or if
functional, may have exhibited significant binding site turnover.
Indeed, a recent study of the occupancies of four tissue-specific TFs in
human and mouse promoters found that as few as 41% of the binding
sites are conserved [49]. Algorithms capable of scoring the conserva-
tion of “k-mers™ binding site affinities despite sequence differences
need to be developed. In addition, the sequences not bound by one TF
potentially could be genuine binding sites for another TF.

Our analysis of UCEs revealed that groups of UCEs that drive
similar gene expression patterns in mouse embryos at E11.5 are
enriched for particular TFs' PBM “bound” 8-mers, and that those TFs
are expressed in the same tissue(s) as those in which the UCEs drive
gene expression. These results can be utilized as predictions of which
TFs may regulate gene expression through particular sites within
those UCEs. The enrichment of both high and lower affinity binding
sites in UCEs suggests that UCEs may have differential regulatory
outputs specific to the nuclear levels of those TFs.

Prior studies typically have focused on high affinity TF binding
sites or higher-scoring motif matches. The advent of high-resolution
PBM data for these 104 mouse [6] and many other TFs [13,50,51]
opens a wide avenue for investigation of the regulatory importance of
lower affinity sites. In addition, as more TFs' DNA binding specificities
are discovered, much of the genome may appear to be a reservoir of
potential regulatory sequences from which binding sites for different
TFs may arise or erode.

In our Lever analysis of 1,371 gene sets, we observed a total of
285 significant pairings, involving a total of 45 gene sets and 88 TFs,

at stringent significance thresholds (AUC>0.8 and Q<0.01).
Numerous associations of TFs with GO categories are supported by
the literature or by the TF being expressed in the same tissue(s) as
the gene set(s) with which its binding sites are enriched, while
many others are novel, putative regulatory associations. Evaluation
of motif combinations in the future is likely to identify more specific
associations of TFs to gene sets [40]. In this analysis we examined
20 kb of noncoding sequence surrounding the transcription start
site of each gene for motif occurrences. Our choice of 20 kb was both
practical in terms of computational time requirements and also
likely somewhat conservative for many TFs. TF binding events in
vivo have been observed to be enriched within ~5 kb surrounding
transcription start sites, as evidenced by studies employing
chromatin immunoprecipitation coupled with microarray readout
(ChIP-chip) for a handful of TFs in human cell lines [52,53].
However, given the limited number of TFs analyzed in those ChIP-
chip studies [52,53] and the abundance of distally located TF
binding events in ChIP-chip [52] and numerous validated, distantly
located transcriptional enhancers [54], it may be informative for the
prediction of cis regulatory modules and codes to expand these
Lever analyses in future studies to consider genomic sequences
located further upstream or downstream of the genes [40].

To our knowledge, the Lever analysis we presented here is the first
study to employ a multiple motifs model for individual TFs in searching
genomic sequence for TF binding site motif matches. This is important,
since it was recently shown that multiple motifs often capture the DNA
binding preferences of proteins more accurately than does any single
motif [6]. Algorithms that can predict cis regulatory modules while
scoring the evolutionary conservation of k-mers need to be developed,
in particular since TF-specific differences in DNA binding, which may not
be captured well by PWMs, are being revealed [50,51]. Our Lever
analysis was limited by potential divergence in TF expression or DNA
binding specificity, and potential divergence in binding site composition
and locations of orthologous cis regulatory modules [55]. Such k-mer
analyses will be important for understanding the “grammar” of how cis
regulatory modules drive particular gene expression patterns, as well as
for understanding the evolution of transcriptional regulatory networks.
Future studies addressing these issues and considering motif combina-
tions and additional gene expression datasets focused on particular cell
types of interest [56], should further specify the context-dependent
regulatory roles of these motifs.

Methods
PBM data

We obtained PBM-derived 8-mer data and position weight
matrices (PWMs) for 104 nonredundant TFs from a recent study
presenting those data [6].

Data collection and generation of control data sets

Human-based ultraconserved conserved sequences [14] and
Phastcons syntenic conserved elements [57] were downloaded
from the authors' supplementary websites (http://www.soe.ucsc.
edu/%7Ejill/ultra.html and http://compgen.bscb.cornell.edu/~acs/
conservation/, respectively). Human CpG island sequences were
downloaded from the CpG island track in the hg17 genome build
using the UCSC table browser (http://genome.ucsc.edu/cgi-bin/
hgTables?command=start) [58]. Control sequences with similar
dinucleotide frequencies were generated using 1st order Markov
models for every sequence within the data sets, using the program
GenRGenS [59]. Two sets of control sequences were generated by:
(1) selecting a length-matched set of random sequences across the
mm8 build of the mouse genome, and (2) using a 1st and 2nd order
Markov model to control for di- and tri-nucleotide frequencies in
overlapping 8-mer windows with a step size of 1 bp.
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Scanning of genomic regions and promoters

Each sequence in each set of genomic regions and control sequences
was scanned in overlapping 8-mer windows with a step size of 1 bp
using custom Perl scripts. The fraction of windows with matches to 8-
mers with E-scores equal or greater than a threshold value for any TF, or
for any TF of a particular structural class, for each sequence was plotted
using MATLAB. Enrichment and statistical significance of scores in real
versus control sequence sets were determined using the Wilcoxon-
Mann-Whitney test implemented in MATLAB.

Each genomic sequence and the matching control sequences were
scanned in overlapping 8-mer windows with a step size of 1 bp for hits
against 8-mers with E>0.40 for each TF using custom Perl scripts. The
distribution of the positive 8-mer hits relative to the TSS was plotted as a
normalized fraction for each sequence set and each TF using MATLAB.

Evolutionary conservation properties of PBM 8-mer data

We examined the conservation properties of 8-mers of various PBM
E-scores by using the SCONE algorithm [38], which calculates a
substitution rate for each nucleotide in the whole genome. Using
SCONE, the MultiZ 17-way sequence alignments of the vertebrate
genomes performed by Genome Bioinformatics Group of UC Santa Cruz
and the phylogenetic tree provided by the ENCODE multiple sequence
alignment working group [60] that we trimmed down to 12 mammals,
we computed the nucleotide substitution rate at every position within
the non-protein coding regions from 10 kb upstream to 10 kb
downstream of annotated transcription start sites for RefSeq genes
with annotated 5’ UTRs. Then, for each sliding window of size 8 nt
within the regions for each RefSeq gene, we summed the individual
substitution rates for consecutive positions within the 8-nt window. For
every possible 8-mer we calculated the average substitution rate over all
genomic occurrences within these regions. An 8-mer with a low average
substitution rate can be considered to be more conserved genome-wide
than an 8-mer with a higher average substitution rate.

Lever analysis

The Lever algorithm was developed previously and is described in
a separate paper [40]. The February 2006 mouse (Mus musculus)
genome data were obtained from the Build 36 "essentially complete"
assembly by NCBI and the Mouse Genome Sequencing Consortium.
We incorporated the phylogenetic information from 12 mammals:
mouse, rat, human, rabbit, chimp, macaque, cow, dog, armadillo,
tenrec, opossum and elephant. We utilized the MultiZ 17-way
alignment of: mouse (Feb 2006, mm8); rat (Nov 2004, rn4); rabbit
(May 2005, oryCun1); human (Mar. 2006, hg18); chimp (Mar. 2006,
panTro2); macaque (Jan 2006, rheMac2); dog (May 2005, canFam2);
cow (Mar 2005, bosTau2); armadillo (May 2005, dasNov1); elephant
(May 2005, loxAfr1); tenrec (Jul 2005, echTel1); opossum (Jan 2006,
monDom4); chicken (Feb 2004, galGal2); frog (Aug 2005, xenTro2);
zebrafish (Mar 2006, danRer4); Tetraodon (Feb 2004, tetNig1); Fugu
(Aug 2002, fr1). The MultiZ alignment was performed by Genome
Bioinformatics Group of UC Santa Cruz. The mouse (mm8) sequence
and annotation data were downloaded from the Genome Browser FTP
server (ftp://hgdownload.cse.ucsc.edu/goldenPath/mm8/). Repeats
from RepeatMasker and Tandem Repeats Finder (with period of 12 or
less) were masked out (RepeatMasker January 12 2005 version with
RepBase libraries: RepBase Update 9.11, RM database version
20050112). The exon coding regions were also masked out by
utilizing the annotation database. For each RefSeq mouse gene and
the corresponding 11 alignments, we considered in our Lever analysis
the sequence regions from 10 kb upstream through to 10 kb
downstream of the annotated transcription start sites for RefSeq
genes with annotated 5’ UTRs. Gene sets corresponding to gene
expression clusters and GO annotation terms were generated as
described below.

Gene expression cluster generation

Probes from Zhang et al. [41] and Su et al. [61] were mapped to
MGI gene name identifiers. Expression profiles for probes mapped to
the same gene identifier were averaged. Those genes not in the
intersection gene set between both studies were excluded from
further analysis. The final data contained expression profiles for
12,065 genes. Pair-wise Pearson correlation coefficients between the
expression profiles of all genes were obtained for each dataset.
Affinity Propagation [62] was used to cluster the data using the sum of
the Pearson correlation coefficients between two genes as their
similarity metric. This resulted in a total of 392 expression clusters.

GO annotation term gene sets

GO annotations provided by Mouse Genome Informatics (MGI)
were downloaded from the Gene Ontology website on Oct. 19, 2007,
version 1.686. GO annotations were up-propagated.

We used the batch system provided in MGI for gene naming
conversions. Since overlaps in the sequence flanking adjacent genes
could create artifactual results, we eliminated any overlaps so that our
analysis considers only non-overlapping sequences. We sorted the
genes into those with high versus low CpG content in their flanking
sequence, after inspecting the bimodal distribution generated by the
scoring function over all of the RefSeq promoters, as defined by
Mikkelsen et al. [37]. We then eliminated any gene sets that had fewer
than 15 or more than 300 genes. Thus, the following gene sets were
used in Lever analysis: (a) 25 gene expression clusters filtered to
consist solely of low CpG content genes and containing at least 15 and
no more than 300 genes; (b) 166 gene expression clusters filtered to
consist solely of high CpG content genes and containing at least 15 and
no more than 300 genes; (c) 352 Gene Ontology (GO) Biological
Process (BP) annotation term gene categories filtered to consist solely
of low CpG content genes and containing at least 15 and no more than
300 genes; (d) 628 GO BP annotation term gene categories filtered to
consist solely of high CpG content genes and containing at least 15 and
no more than 300 genes; (e) 67 GO Cellular Component (CC)
annotation term gene categories filtered to consist solely of low CpG
content genes and containing at least 15 and no more than 300 genes;
(f) 133 GO CC annotation term gene categories filtered to consist
solely of high CpG content genes and containing at least 15 and no
more than 300 genes.

Lever [40] requires an input set of PWMs to use in the genome
sequence searches. The PWMs and corresponding motif match thresh-
olds utilized in Lever analysis are provided in Supplementary Data.
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