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not every, case11. In comparison, BEEML-
PBM improved the predictions in every case 
(compared with UniPROBE PWMs), the 
resulting model has many fewer parameters 
than the SVR model, and each parameter 
has a specific biophysical interpretation (e.g., 
a binding energy contribution of a specific 
base-pair to the transcription factor–DNA 
interaction). The software code for BEEML-
PBM is available in Supplementary Note 
and at http://ural.wustl.edu/~zhaoy/beeml/.
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PBMs are an important technological 
development, especially in the latest 
implementations that include all possible 
10-mer binding sites. They provide an 
inexpensive and high-throughput method 
for determining binding specificities 
of transcription factors and are rapidly 
increasing the database of characterized 
transcription factors. To maximize the 
information obtained from this technique, 
it is critical to employ optimized analysis 
methods. The success of the BEEML-PBM 
method is mainly due to the power of 
regression analysis and demonstrates that 
quantitative PBM data can be analyzed in 
the traditional biochemical framework of 
equilibrium binding to obtain accurate 
binding energies.

With a few exceptions, the simple PWM 
model performs very well, supporting 
the hypothesis that the energetics of 
transcription factor–DNA recognition 
is generally simple. This simplicity has 
considerable practical implications. The 
main difficulty in the study of transcription 
factor specificity is one of scale. Unlike 
protein–protein interactions, a single 
affinity is not sufficient to parameterize 
transcription factor specificity. For example, 
there are more than a million possible 
sequences for a 10-nt-long binding site. 
Even with high-throughput techniques, 
direct measurement of affinity for all sites 
is not practical. However, if the bases 
contribute to the total binding free energy 
independently, then a model with only 31 
parameters can give accurate predictions 
of the million binding energies. Even if 
neighboring dinucleotide interactions 
are important, only 112 parameters are 
necessary9. Furthermore, this simplicity can 
be exploited in the design of promoters with 
tunable induction or transcription factors 
with custom specificity.

We conclude that the widespread 
phenomenon of secondary binding 
preference identified by Badis et al.6 from 
PBM data is not supported by the data. 
The suboptimal estimation of the PWMs 
in previous studies can be accounted for 
by the lack of a biophysical model for 
transcription factor binding and the use of 
summary statistics, such as E-scores and 
Z-scores. This can be corrected by taking 
into account the specific characteristics of 
PBM data and maximizing the fit to the 
intensity data directly.

A support vector regression (SVR) 
method has also been used to improve PWM 
predictions compared with UniPROBE 
PWMs, yielding superior results in most, but 

Jury remains out on simple models 
of transcription factor specificity
To the Editor:
Zhao and Stormo1 introduce a new method 
for deriving position weight matrices (PWMs) 
from protein binding microarrays (BEEML-
PBM). Using this method, they challenge 
a central claim of our 2009 paper2 and 
conclude “that the widespread phenomenon 
of secondary binding preference identified by 
Badis et al. is not supported by our data” and 
that the PWMs were suboptimally estimated. 

BEEML-PBM is simple, elegant and 
corrects for a pronounced positional effect 
of transcription factor (TF) binding in the 
PBM assay; however, we do not agree with 
their overall conclusion and believe that it is 
based on incomplete and biased analysis of our 
data. The conclusions of Zhao and Stormo1 
are based on comparing the performance of 
BEEML-PBM PWMs and our methods on 
held-out data. However, they overestimate the 
performance of their PWMs and underestimate 
the performance of our methods.

First, their claims of suboptimality of our 
PWMs are based on results from only one of 
the three motif finders that we employed, Seed-
and-Wobble (SnW). SnW was not developed to 
predict probe intensities and does not attempt 
to produce a summary PWM that optimizes 
performance over all probes in predicting 
probe intensities. Instead, it was developed 
for the purpose of summarizing the 8-mer 
data, seeding with the highest scoring 8-mer, 
in a compact way for use in visual depiction 

as sequence logos. In contrast, another of 
the methods we employed, RankMotif++, is 
designed to produce summary PWMs and we 
have previously reported3 that it, like BEEML-
PBM, better predicts probe intensities than 
SnW. So we suspect its performance would be 
much more competitive. In fact, RankMotif++ 
is very similar to the BEEML base method4; 
it fits a PWM model using a regression-like 
procedure to optimally predict PBM intensity 
data. RankMotif++ differs from BEEML 
primarily in that it regresses on a partial 
preference ordering of probes inferred from 
their PBM intensities rather than on their 
actual intensities themselves. We acknowledge 
that comparisons with RankMotif++ PWMs 
would have been difficult because, although 
the source code for RankMotif++ has been 
available for 3 years, the PWMs we learned for 
Badis et al.2 were until recently only available 
as sequence logos. However, we made the 
motifs available to Zhao and Stormo1 when we 
were notified of this oversight and before the 
final submission of their paper. The motifs are 
available here: http://the_brain.bwh.harvard.
edu/suppl105/.

Second, we note that Zhao and Stormo1 use 
a positional effect model when training their 
PWMs but do not allow the methods that they 
are comparing against the same opportunity 
to correct this bias during training. We 
propose that this correction is a major cause 
of BEEML-PBM’s success and that both the 
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multiple PWM methods and the 8-mer affinity 
estimates we employed would greatly benefit 
from a similar correction, thus restoring our 
reported gain in performance. For example, 
the 8-mer median intensities used in their 
Figure 2a are not corrected for positional 
biases and this leads to the counterintuitive 
claim that for the 15–20 (of 41) data points that 
lie above the diagonal, BEEML-PBM PWMs 
capture >100% of the replicate reproducibility. 
A more appropriate comparison would either 
employ PWMs uncorrected for positional bias 
(as we did in our original paper) or to compare 
against similarly corrected 8-mer median 
intensities. Zhao and Stormo1 do neither 
and, as such, we believe that their prediction 
accuracy estimates are inflated.

Finally, we note that explaining 90% of the 
reproducible binding signal is not the same 
as explaining 100%, and proteins that we and 
others have confirmed have multiple binding 
modes do not satisfy Zhao and Stormo’s 90% 
cut-off. For example, we reported that Jundm2 
(Jdp2) binds two half-sites with variable 
spacing between them; this is clearly observed 
in the top-scoring 8-mers2. This mode of 
binding is common among other bZIP 
proteins. Furthermore, Zhao and Stormo1 
do not consider the PBM data for Bcl6b, a 
C2H2 zinc finger for which we obtained two 
very different PWMs; these are also clearly 
observed in the top-scoring 8-mers, and, 
moreover, enrichment for motif matches can 
be observed in associated ChIP-chip data2. In 
general, variable spacing in long C2H2 zinc-
finger array seems to be common; for example, 
ChIP-seq for RE1-silencing transcription 
factor also supports use of partial versus full 
sites and different spacings5. Single, summary 
PWMs cannot capture these binding modes, 
and it is important to do so, as C2H2 zinc 
fingers are the most common domain in 
metazoa, and long arrays of these domains are 
common in human and mouse genomes.

We agree that simple and accurate 
representation of transcription factor 
sequence specificity on the basis of PBM 
data is an important problem. We ourselves 
have been working on extensions to our 
algorithms to capture the PBM positional and 
orientation effects (which we have previously 
reported6). We also have recently conducted a 
DREAM (Dialogue for Reverse Engineering 
Assessments and Methods) competition in 
which the goal was to predict PBM probe 
intensities using a two-array framework and 
evaluation criteria similar to those used in 
reference 2 and Zhao et al.4. A manuscript 
describing these new data, the competition, the 
methods of ~20 groups, their evaluation and a 
web site that allows benchmarking any method 
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to the DREAM results is in preparation  
(M. Weirauch et al., unpublished data). We 
have now obtained the BEEML-PBM code, and 
we look forward to comparing it to alternatives.
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US attitudes toward human 
embryonic stem cell research
To the Editor:
Although scientifically promising, research 
using human embryonic stem cells (hESCs) 
has roused political controversy for nearly 
two decades, with sharp differences 
between policies in different nations and, 
in the United States, repeated changes in 

policy—the latest of which is the lifting 
of the ban on US federal funding of hESC 
work1. US federal funding for research on 
stem cells derived from nuclear transfer 
of a patient’s own genes, a promising 
approach sometimes called therapeutic 
cloning, remains banned2. Arguments for 

Box 1  Questions on reproductive cloning

Scientists can now make clones—baby animals that are exact genetic copies of an adult. 
This is how it works:

• �BEGIN with a fertilized egg. For humans this is likely to be a spare embryo from an 
IVF program which would otherwise be thrown away.

• REMOVE the original genes.
• REPLACE them with genes from the person to be cloned.
• �GROW the fertilized egg in the lab for a few days into an early embryo, a little ball 

of cells.
• �IMPLANT the embryo in the womb of a surrogate mother where it develops into a 

baby. The baby is the donor’s identical twin, except for the difference in age.

Do you approve of...

Cloning endangered animals?
��Cloning the best farm animals to improve breeding stock—for example, cloning a superb 
dairy bull?
�Cloning a child killed in a traffic accident?
Cloning a child that is a copy of its father or mother?

The answer options for these questions were:

Definitely yes
Yes
Undecided, mixed feelings
No
Definitely not

We scored these options in equal intervals: Definitely not = 0; No = 25; Undecided, mixed 
feelings = 50; Yes = 75; Definitely yes = 100.
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