
Rapid analysis of the DNA-binding specificities of
transcription factors with DNA microarrays
Sonali Mukherjee1,2,9, Michael F Berger1,3,9, Ghil Jona4, Xun S Wang1,5, Dale Muzzey1,3, Michael Snyder4,6,
Richard A Young5,7 & Martha L Bulyk1–3,8

We developed a new DNA microarray-based technology,
called protein binding microarrays (PBMs), that allows rapid,
high-throughput characterization of the in vitro DNA binding–
site sequence specificities of transcription factors in a single
day. Using PBMs, we identified the DNA binding–site sequence
specificities of the yeast transcription factors Abf1, Rap1 and
Mig1. Comparison of these proteins’ in vitro binding sites with
their in vivo binding sites indicates that PBM-derived sequence
specificities can accurately reflect in vivo DNA sequence
specificities. In addition to previously identified targets, Abf1,
Rap1 and Mig1 bound to 107, 90 and 75 putative new target
intergenic regions, respectively, many of which were upstream
of previously uncharacterized open reading frames.
Comparative sequence analysis indicated that many of these
newly identified sites are highly conserved across five
sequenced sensu stricto yeast species and, therefore, are
probably functional in vivo binding sites that may be used in
a condition-specific manner. Similar PBM experiments should
be useful in identifying new cis regulatory elements and
transcriptional regulatory networks in various genomes.

The interactions between transcription factors and their DNA binding
sites are an integral part of transcriptional regulatory networks. They
control the coordinated expression of thousands of genes during
normal growth and in response to external stimuli. Much progress
has been made recently in the identification and analysis of mRNA
transcript profiles1,2, locations of in vivo binding sites of transcription
factors3–6 and protein-protein interactions7–10. But many trans-
cription factors still have unknown DNA binding specificities and
regulatory roles.

Earlier technologies aimed at characterizing DNA-protein interac-
tions are time-consuming and not scalable. Microarray-based readout
of chromatin immunoprecipitation (ChIP-chip), or genome-wide
location analysis, is currently the most widely used high-throughput

method for identifying in vivo genomic binding sites for transcription
factors3–6. But some ChIP-chip experiments do not result in signifi-
cant enrichment of bound fragments in the immunoprecipitated
sample. In addition, there may be transcription factors of interest
for which a specific antibody is not available or for which the culture
conditions or time points that allow its expression and activity are
not known.

We previously developed a spotted microarray technology that used
primer-extended, double-stranded synthetic DNAs to quantify the
differences in binding affinities for various DNA binding–sequence
variants. This technology allowed us to distinguish proteins with
similar binding-site preferences and to determine the binding specifi-
cities of proteins with degenerate sequence preference11. Another
group recently extended this technology to use surface plasmon
resonance12. Although surface plasmon resonance can provide kinetic
data, it is not currently scalable to a large number of samples.

Here we developed a new in vitro DNA microarray technology
for genome-scale characterization of the sequence specificities of
DNA-protein interactions. This protein-binding microarray (PBM)
technology allows the determination of in vitro binding specificities
of individual transcription factors in a single day, by assaying
the sequence-specific binding of those individual transcription
factors directly to double-stranded DNA microarrays spotted with
a large number of potential DNA-binding sites. A DNA-binding
protein of interest is expressed with an epitope tag, purified and
then bound directly to a double-stranded DNA microarray. The PBM
is then washed to remove any nonspecifically bound protein and
labeled with a fluorophore-conjugated antibody specific for the
epitope tag (Fig. 1a).

We focused our efforts on the genome of the yeast Saccharomyces
cerevisiae because of its usefulness as a model organism for both
experimental and computational studies. Binding-site data from
PBMs on yeast transcription factors corresponded well with binding-
site specificities determined from ChIP-chip. Moreover, comparative
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sequence analysis of the PBM-derived binding sites indicated that
many of the sites bound in PBMs, including some not identified by
ChIP-chip, are highly conserved in other sensu stricto yeast genomes
and therefore are probably functional in vivo binding sites that
potentially are used in a condition-specific manner. Our PBM
technology should aid in the annotation of many regulatory proteins
whose DNA-binding specificities have not been characterized and in
the construction of gene regulatory networks.

RESULTS
PBM experiments
As a validation of this approach, we bound CBP-FLAG-Rpn4 fusion
protein to microarrays spotted with positive and negative control
spots for binding by Rpn4. We labeled the protein-bound array with
Cy3-conjugated M2 primary antibody to FLAG (Sigma) and scanned
it with a microarray scanner (GSI Lumonics ScanArray). Only the
spots that contain good matches to the binding-site motif for Rpn4
have high signal intensity (Supplementary Fig. 1 online). As we
previously found that higher signal intensity is generally indicative of
higher DNA-protein binding affinity11, this CBP-FLAG-Rpn4 PBM
indicates that our PBM technology is successful in identifying
sequence-specific transcription factor binding.

Next, we applied the PBM technology on a genome-wide scale by
using whole-genome yeast intergenic arrays in PBM experiments to
identify the sequence specificities and target genes of three yeast
transcription factors: Abf1, Rap1 and Mig1. Abf1 has a zinc-finger
DNA-binding domain, binds origins of replication and regulates
ribosome synthesis. Rap1 binds DNA through a Myb-like helix-
turn-helix DNA-binding domain and, in addition to regulating
ribosome synthesis13, regulates telomere length and expression at
the silent mating-type loci HML and HMR14. Mig1 has a zinc-finger
DNA-binding domain and is involved in the repression of glucose-
repressed genes15.

We used Abf1, Rap1 and Mig1, dually tagged at the N terminus
with glutathione S-transferase (GST) and His6, in PBM experiments

using microarrays spotted with essentially all the intergenic regions in
the yeast genome3. The washed, protein-bound microarrays were
labeled with Alexa 488-conjugated antibody to GST (Molecular
Probes) and scanned with a microarray scanner. The microarray TIF
images were quantified using GenePix Pro version 3.0 software. A
whole-genome yeast intergenic microarray that was used in a PBM
experiment with Rap1 is shown in Figure 1b,c. Negative control PBMs
did not show sequence-specific DNA binding (Supplementary Fig. 2
online). For each transcription factor, experiments were done in
triplicate. We found that the PBM data were highly reproducible,
with most spots having a coefficient of variation (i.e., s.d. divided by
the mean) o0.3 (Supplementary Fig. 3 online).

To normalize the PBM data by relative DNA concentration, we
stained separate microarrays from the same print run with SybrGreen
I (Molecular Probes), which is specific for double-stranded DNA. The
distribution of the log ratios of mean PBM to mean SybrGreen I signal
intensities for the set of triplicate Rap1 PBM experiments is shown in
Figure 2a. The spots on the left, whose distribution is fit well by a
Gaussian function, are bound nonspecifically by the transcription
factor. Conversely, the heavy upper tail of the distribution corresponds
to spots that are bound specifically by the transcription factor. For
each spot, we calculated a P value for specific binding based on the
magnitude of its log ratio relative to the standard deviation of the
Gaussian distribution. The numbers of unique spots that pass a
P-value threshold of 0.05, 0.01 or 0.001 for the PBM data of Abf1,
Rap1 or Mig1 are shown in Supplementary Figure 4 online. We used
a Bonferroni-corrected P-value threshold of 0.001, even though it may
increase our false negative rate, to increase the likelihood that spots
passing our P-value threshold are true positives. This approach
disfavors very long intergenic regions, as a single binding site
embedded in a long fragment may result in only a moderately high
log ratio. Portions of a SybrGreen I–stained microarray and a
corresponding Rap1 PBM are shown in Figure 2b. The spots with
high log ratio PBM data in Figure 2b correspond to the intergenic
regions directly upstream of known gene targets of Rap1. A complete
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dsDNA microarrays

Bind epitope-tagged TF
to dsDNA microarrays

Label with fluorophore-tagged
antibody to epitope

Scan triplicate
microarrays

Calculate normalized PBM data

GST

SybrGreen I

Figure 1 PBM schematic. (a) Overview of PBM experiments. (b) Whole-genome yeast intergenic microarray bound by Rap1. The fluorescence intensities

of the spots are shown in false color, with white indicating saturated signal intensity, red indicating high signal intensity, green indicating moderate

signal intensity and blue indicating low signal intensity. (c) Magnification of a portion of the whole-genome yeast intergenic microarray bound by Rap1.

ds, double-stranded; TF, transcription factor.
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listing of P values for all intergenic regions for Abf1, Rap1 and Mig1
is available from our website (see URL in Methods). In total, we
identified 189, 294 and 79 putative target intergenic regions for Abf1,
Rap1 and Mig1, respectively.

Identification of DNA binding site motifs
For each transcription factor, we analyzed the sequences correspond-
ing to spots that had a Bonferroni-corrected P value of o0.001 with
the motif discovery program BioProspector16 to identify DNA bind-
ing–site motifs for Rap1, Abf1 and Mig1 (Fig. 3). Motifs from PBM
data passing less stringent P-value thresholds are shown in Supple-
mentary Figure 5 online. The PBM technology allows the identifica-
tion of both ungapped (e.g., Rap1 and Mig1) and gapped (e.g., Abf1)
binding-site motifs. Compared with computational negative controls
on matched sets of randomly selected intergenic regions, the group
specificity scores17 derived from the PBM data for each of these three
transcription factors were extremely significant (Fig. 3). Thus, we have
confidence that the PBM data represent true sequence-specific binding
of the transcription factors.

The motifs derived from the Rap1, Abf1 and Mig1 PBM data are
good matches to the binding-site motifs for these factors derived from
the TRANSFAC18 Professional database (Fig. 3). To confirm and
further explore the high-resolution binding-site data generated from
PBMs, we carried out electrophoretic mobility shift assays (EMSAs).
In one example, the bound intergenic region iYPL221W contained a
highly significant match (GTGCACGGATTT) to the PBM-derived
Rap1 binding-site motif, but it was a poor match to the TRANSFAC
Rap1 motif (Fig. 4a). The TRANSFAC motif would predict the
underlined nucleotides to be unfavorable for Rap1 binding, whereas
the PBM motif is somewhat degenerate at these positions. Our EMSA
analysis confirmed that Rap1 is capable of high-affinity binding to this
sequence (Fig. 4b). This is an example of a transcription-factor
binding site that would have been missed by using the TRANSFAC
motif because of the sparseness and potential ascertainment bias in the
TRANSFAC database.

To approximate the potential false-positive rate from PBMs, we
determined the fraction of spots passing a P-value threshold of 0.001
that was not identified by BioProspector16 as containing a sequence
belonging to the given transcription factor’s binding-site motif
(Fig. 2a). This is by no means a perfect measure; some of these
potential false positives could simply have either less-significant
matches to the identified motif or multiple occurrences of lower
affinity sites that do not belong to the motif. For example, the bound
intergenic region iYLL051C, which had only a weak sequence match to
the Rap1 PBM motif (Fig. 4a), was confirmed by EMSAs to be bound

by Rap1 in vitro (Fig. 4b). This finding suggests that some high-
affinity binding sites may not be significant sequence matches to a
given transcription factor binding-site motif. Thus, our false-positive
rate may be lower than we estimated. Nevertheless, using this
approximate measure of false positives, we found that our false-
positive rates ranged from B7% to 9% of ‘bound’ spots.

Comparison of PBM data and ChIP-chip data
Approximately 6,400, 6,100 and 6,400 unique intergenic PCR pro-
ducts passed our various PBM data quality control filters for Rap1,
Abf1 and Mig1, respectively. ChIP-chip data5,6 were also available for
99.9%, 93.1% and 93.7%, respectively, of these intergenic regions.
DNA binding–site motifs identified with the PBM technology for Abf1
and Rap1 corresponded well to motifs determined from analysis of
previously published ChIP-chip data passing a P-value threshold of
0.001 for these same transcription factors5,6 (Fig. 3). But we could
derive the binding site motif for Mig1 from only the PBM data and
not from the ChIP-chip data6. Unlike Rap1 and Abf1, the intergenic
regions identified as bound by Mig1 in PBMs overlapped with only a
few regions identified as bound by ChIP-chip (Fig. 5). Furthermore,
many fewer regions in total were identified as bound by Mig1 in ChIP-
chip as compared with PBMs. Because Mig1 is regulated at the level of
nuclear localization15, it is possible that the yeast cultures for the
ChIP-chip experiments were such that Mig1 may have been predo-
minantly cytoplasmic. Overall, we identified 107, 90 and 75 putative
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Figure 2 Identifying the specifically bound spots. (a) Distribution of ratios of

PDM data to SybrGreen I data for Rap1. The arrow indicates those spots

passing a P-value threshold of 0.001 after correction for multiple hypothesis

testing. Indicated in red are spots with an exact match to a sequence

belonging to our discovered Rap1 binding-site motif. (b) Magnification of

intergenic regions, from both PBMs (left) and SybrGreen I–stained

microarrays (right), upstream of RPL14A, RPL8A and OPI3, which are

known to be direct targets of Rap1. The fluorescence intensities of the spots

are shown in false color, color-coded as described for Figure 1. PBM P

values are corrected for multiple hypotheses. Determination of binding in

ChIP-chip experiments (Y, yes; N, no) is shown. All regions shown have an

exact match to a sequence belonging to the discovered Rap1 motif. For

each region, the binding site is conserved across five sensu stricto yeast

strains, either to within two standard deviations or 100% identical at each

position (Exact). The asterisk indicates Rap1 ChIP-chip data from Lee
et al.6; the pound sign (#) indicates Rap1 ChIP-chip data from Lieb et al.5

NATURE GENETICS ADVANCE ONLINE PUBLICATION 3

T E C H N I C A L R E P O R T S



new target intergenic regions for Abf1, Rap1 and Mig1, respectively,
including those upstream of 25, 40 and 29 previously uncharacterized
open reading frames (ORFs), respectively. (See Supplementary Fig. 6
online for comparisons using various P-value thresholds.)

Sequence conservation of identified binding sites
To find evidence supporting our hypothesis that the regions bound
only in vitro are probably functional in vivo but were not identified
previously for some specific biological reason, we mapped the pre-
dicted binding sites in S. cerevisiae to the orthologous positions in the
genomes of Saccharomyces mikatae, Saccharomyces kudriavzevii,
Saccharomyces bayanus and Saccharomyces paradoxus19,20. We found
that all amino acid residues important in DNA-protein recognition for
Abf1, Rap1 and Mig1 were identical across these five sensu stricto
species. We examined binding-site conservation in two different ways.
First, we considered a site to be conserved if the orthologous sequence
in all five species was within two standard deviations of the motif
average21 derived from the set of regions passing a P-value threshold
of 0.001 in PBMs. Second, we used a strict measure of sequence
conservation, requiring 100% sequence identity at all informative
nucleotide positions of the transcription-factor binding site in all
five species. Although the level of conservation varied for these three
transcription factors, the binding sites in regions bound in PBMs were
as likely to be conserved as the binding sites in regions bound in ChIP-
chip (Fig. 6). Furthermore, the regions bound only in PBMs and not
in ChIP-chip had approximately the same degree of conservation.
PBM experiments identified 23, 70 and 38 putative binding sites for
Mig1, Abf1 and Rap1, respectively, that were conserved within two
standard deviations in all five species and that were not identified as
‘bound’ in ChIP-chip experiments5,6. Moreover, the regions bound

only in PBMs identified between six and ten new conserved sites that
are 100% identical across all five species. Given the known conserva-
tion level across the sensu stricto genomes20, the probability of
observing even a single binding site that is 100% conserved by chance
is extremely small. Thus, we believe that the intergenic regions bound
in PBMs contain functional in vivo binding sites.

Identification of target genes
We examined each set of intergenic regions bound in PBMs to
determine whether the candidate target genes, located directly down-
stream of the bound intergenic regions, were over-represented for
particular functional groups17,22. A complete listing of all candidate
target genes and significantly enriched functional categories for all
three transcription factors is provided on our website (see URL in
Methods). Of the significantly enriched categories for the candidate
target genes of Rap1, a large number are consistent with the known
regulatory functions of Rap1 (ref. 13), including the MIPS functional
categories for ribosome biogenesis, protein synthesis, structural con-
stituents of the ribosome and cell growth and/or maintenance. In
addition, 40 previously uncharacterized ORFs are among the newly
identified putative Rap1 target genes. As further evidence of their
functional importance, many of the corresponding enriched target
genes from the PBM data, including the uncharacterized ORFs
YDR109C, YKL151C, YIL001W and YKL082C, had upstream Rap1
binding sites that were conserved across all five sensu stricto yeast
species (Fig. 6).

Further characterization of these target genes may identify pre-
viously unknown biological functions for Rap1. Ydr109c shows strong
homology (BLAST E value ¼ 6.0 � 10–97) to a number of ribitol
kinases, and Ykl151c shows homology (BLAST E value ¼ 2.0 � 10–15)
to a carbohydrate kinase family, suggesting that Rap1 might connect
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P = 4.6 × 10–12P = 8.6 × 10–147P = 8.7 × 10–92

P = 4.1 × 10–135

Figure 3 DNA binding site motifs as determined by PBMs compared with

motifs derived from ChIP-chip data and from TRANSFAC. Sequence logos

were generated essentially as described previously49. Group specificity

scores are shown. The asterisk indicates Rap1, Abf1 and Mig1 ChIP-chip

data from Lee et al.6; the pound sign indicates Rap1 ChIP-chip data from

Lieb et al.5. Although the Mig1 binding-site motif derived from the ChIP-

chip data has a statistically significant group specificity score, it is not a

match to either the TRANSFAC or the PBM Mig1 motif. The Pearson

correlation coefficients17 comparing the PBM and ChIP-chip motifs, as well

as those comparing each of these motifs versus the motifs present in the

TRANSFAC database18, were as follows: Rap1 PBM versus Lee et al.6 ChIP-

chip, 0.992; Rap1 PBM versus Lieb et al.5 ChIP-chip, 0.995; Rap1 PBM

versus TRANSFAC, 0.953; Rap1 Lee et al.6 versus Lieb et al.5 ChIP-chip,

0.985; Rap1 Lee et al.6 ChIP-chip versus TRANSFAC, 0.921; Rap1 Lieb

et al.5 ChIP-chip versus TRANSFAC, 0.950; Abf1 PBM versus ChIP-chip6,
0.989; Abf1 PBM versus TRANSFAC, 0.978; Abf1 ChIP-chip6 versus

TRANSFAC, 0.986; Mig1 PBM versus ChIP-chip6, 0.453; Mig1 PBM versus

TRANSFAC, 0.938; Mig1 ChIP-chip6 versus TRANSFAC, 0.406.

Figure 4 EMSAs of PBM-derived Rap1 binding-site sequences. (a) Rap1

binding-site sequences present in the DNA probes corresponding to portions

of the intergenic regions iYLL051C (P ¼ 3.20 � 10–16) and iYPL221W

(P ¼ 3.91 � 10–21), aligned against the TRANSFAC and PBM-derived Rap1

binding-site sequence logos. (b) Lanes 1 and 2, positive control DNA probe;

lanes 3 and 4, negative control DNA probe; lanes 5 and 6, DNA probe

corresponding to the best Rap1 binding-site sequence that could be

identified in the iYLL051C intergenic region; lanes 7 and 8, DNA probe

corresponding to the PBM-derived Rap1 binding-site sequence in the

iYPL221W intergenic region. The presence (+) or absence (–) of Rap1

protein in the binding reaction is indicated. TF, transcription factor.
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the nutrient status of a cell with its translational capacity. Yil001w
shows strong homology (BLAST E value ¼ 4.0 � 10–26) to human
elongation factor 1A binding protein, implicating it in protein synth-
esis. YKL082C is thought to encode a nucleolar protein that is required
for normal pre-rRNA processing and is involved in the establishment
of cell polarity23. Expression of YKL082C clusters with that of several
Rap1 targets identified by PBM and ChIP-chip, including RPS27A
(ribosomal protein), UBP10 (telomeric silencing) and BUD22 and
BUD27 (bud site selection)24. Bud27 is also involved in gene expression
controlled by the TOR kinase, which is known for its role in transdu-
cing the availability of nutrients into growth and ribosome synthesis.

The significantly enriched categories for the target genes derived
from the Abf1 PBM data are also consistent with the known regulatory
functions of Abf1 (ref. 13), including the Gene Ontology biological
process categories for cell growth and/or maintenance, cell organiza-
tion and biogenesis, and essentiality. Among the categories of Abf1
candidate target genes identified in this study that were not previously
identified as targets by ChIP-chip, there was an enrichment for the
MIPS subcellular localization functional category of the mitochondrial
outer membrane, the MIPS protein complex functional category for
the mitochondrial translocase complex, and the Gene Ontology
biological process functional categories of nucleic acid metabolism
and protein metabolism. In all, we identified 25 uncharacterized
putative target genes for Abf1, approximately half of which are
downstream of Abf1 sites conserved across all five sensu stricto species.
Of note, Yhr020w shows homology to a Drosophila melanogaster
glutamyl-prolyl-tRNA synthetase (BLAST E value ¼ 10–172).
YHR020W is coexpressed with several other putative Abf1 targets
involved in protein and nucleic acid metabolism24.

A much more complete picture of the regulatory functions of Mig1
was possible from analysis of the PBM target genes than could be
derived from the available ChIP-chip data6. Several known Mig1 target
genes, including DOG2 (ref. 25), EMI2 (ref. 15), FBP1 (ref. 26), GAL4

(ref. 27), GUT1 (ref. 28), HXK1 (ref. 15), HXT1 (ref. 15), HXT2
(ref. 29), JEN1 (ref. 30), REG2 (ref. 15), YFL054C15 and YKR075C15,
were identified only by PBMs. Among the enriched functional
categories were those for C-compound and carbohydrate metabolism,
carbohydrate transporters, and alcohol metabolism, all of which are
consistent with the known regulatory function of Mig1 as a transcrip-
tional repressor of genes whose products are dispensable at high levels
of glucose15. We identified many new putative target genes for Mig1,
29 of which were previously uncharacterized, including the ORFs
YNR071C, YIL024C, YLR089C, YOR356W and YLR072W.

Ynr071c shows strong homology (BLAST E value ¼ 9.0 � 10–87) to
Gal10, which has a key role in galactose metabolism. Yil024c shows
homology, albeit low (WU-BLAST2 E value ¼ 0.09), to Sip2, a
member of a family of proteins that interact with Snf1 and Snf4 and
are involved in the response to glucose starvation31. YLR089C and
YOR356W both encode proteins that are localized to the mitochon-
dria32 and are probably important in the catabolism of fuel molecules.
Ylr089c shows homology to Bna3, which is involved in NAD biosynth-
esis, and to alanine aminotransferases in species ranging from plants to
human (BLAST E value ¼ 10–116). These transaminases mediate the
conversion of major metabolites involved in gluconeogenesis and
amino acid metabolism. Yor356w shows strong homology (BLAST E
value ¼ 10–159) to a human electron transfer flavoprotein-ubiquinone
oxidoreductase. Notably, YIL024C, YLR089C and YOR356W are imme-
diately downstream of Mig1 binding sites that are conserved in all five
sensu stricto species. Our results also indicate that Mig1 may have a
role in cholesterol biosynthesis. Mig1 shows strong homology to the
human transcription factor WT1, which was recently implicated in
repression of the mevalonate pathway central in cholesterol biosynth-
esis33. Similarly, Ylr072w shows homology to Atg26, a sterol 3-beta
glucosyl transferase involved in sterol metabolism.

Finally, we investigated whether the collective group of target
genes for each transcription factor showed concerted expression in
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a b c Figure 5 Comparison of bound intergenic regions

derived from PBM data as compared with those

derived from ChIP-chip5,6. Venn diagrams

depicting the results of the comparison for Rap1

(a), Abf1 (b) and Mig1 (c). The Venn diagrams

depict data for only those intergenic regions for

which data were available for both ChIP-chip and

PBMs. The asterisk indicates Rap1, Abf1 and

Mig1 ChIP-chip data from Lee et al.6; the pound

sign (#) indicates Rap1 ChIP-chip data from

Lieb et al.5

Figure 6 Cross-species sequence conservation of binding sites identified

from PBM data as compared with those identified from ChIP-chip data.

From left to right for a single transcription factor, bars represent all spots

bound in PBMs, all spots bound in ChIP-chip and spots bound in PBMs and

not ChIP-chip. The subset of bound spots with S. cerevisiae binding sites

conserved to within two standard deviations of the motif average across all

five sensu stricto species is shown in dark gray. The subset of S. cerevisiae

bound spots with conserved sites 100% identical across all five species is

shown in black. The remaining bound spots are shown in light gray. The

asterisk indicates Rap1, Abf1 and Mig1 ChIP-chip data from Lee et al.6; the

pound sign (#) indicates Rap1 ChIP-chip data from Lieb et al.5
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particular experimental conditions. We hypothesized that by combin-
ing PBM and expression data, we could infer optimal conditions for
transcription factor activity. We used 643 publicly available S. cerevi-
siae gene expression data sets to identify conditions in which sub-
stantial fractions of Abf1, Rap1 and Mig1 PBM target genes were
differentially expressed. The conditions that resulted in the largest
numbers of differentially regulated candidate target genes corre-
sponded well with the known functions of each transcription factor
(Supplementary Note online). For example, many Mig1 PBM target
genes were downregulated by a factor of at least 2.5 in glucose and
fructose, compared with other carbon sources. These results show
that, together with expression profiling, PBM analysis can provide
insight into the functions of particular transcription factors and
identify conditions in which they are active in vivo. This information
can also be used to prioritize conditions for ChIP-chip experiments,
which require that the transcription factor under study be expressed
and active.

DISCUSSION
This PBM technology allows rapid, high-throughput characterization
of the DNA binding–site sequence specificities of transcription factors
in a single day and can associate transcription factors with the genes
they regulate. In addition to identifying enriched functional categories
of known and newly identified target genes, we also identified many
uncharacterized ORFs as candidate target genes of Rap1, Abf1 and
Mig1. As observed for Mig1, PBM experiments will be particularly
useful when ChIP-chip does not result in enough enrichment of
bound fragments in the immunoprecipitated sample to permit iden-
tification of the DNA sites bound in vivo. ChIP-chip experiments
require that the cells be in culture conditions in which the transcrip-
tion factor of interest is expressed and nuclear. Furthermore, it is
possible that the antibody used in ChIP-chip may not be able to detect
certain classes of transcription-factor DNA binding in vivo, such as if
the primary epitopes become inaccessible due to the formation of
particular complexes at certain sites. Moreover, integrating an epitope
tag on the genomic copy of the transcription factor, which allowed the
use of a single antibody in the 106 ChIP-chip experiments done by Lee
et al.6, is not as trivial in many other organisms as it is in yeast; instead,
protein-specific antibodies that are both specific and successful in
chromatin immunoprecipitation are required, and the generation of
such antibodies is not a trivial undertaking.

Even though the DNA in PBM experiments is not in the same state
as it might be if it were to be bound by the transcription factor in vivo,
results from PBM experiments can provide valuable data on the
sequence specificity of transcription factors, particularly those that
have been poorly understood or uncharacterized thus far. Carrying
out ChIP-chip experiments on yeast grown under a variety of different
culture conditions will help to confirm our predictions that particular
sets of newly identified binding sites are indeed bound in vivo34.
Furthermore, the combination of PBM data with mRNA expression
data, ChIP-chip data, protein-protein interaction data and existing
genetic and biochemical data in the literature will contribute to more
detailed models of gene regulatory networks in yeast35.

Results from PBM and ChIP-chip experiments might not corre-
spond so closely for all proteins. Such differences may help to identify
whether there are substantial in vivo effects due to chromatin structure
or cofactors important in allowing or preventing sequence-specific
binding. To look for evidence for such coregulatory mechanisms, we
searched the sets of intergenic regions bound only in vitro or only
in vivo for secondary DNA sequence motifs for each transcription
factor. We did not find any statistically significant secondary motifs,

potentially because of the many different modes by which binding
of transcription factors to DNA is regulated in vivo. It is possible,
however, that such secondary motifs exist for transcription factors
not studied here.

The data presented here indicate that the PBM approach works for
transcription factors with DNA-binding domains of a number of
different structural classes. PBMs could also be used to study
DNA-binding proteins important in other biological processes, such
as DNA replication, DNA repair, genome rearrangement or modifica-
tion of DNA. Because PBM experiments are highly scalable, they
could be adapted for the analysis of all possible DNA sequence
variants. Similarly, there are hundreds of predicted DNA binding
proteins in yeast and thousands of predicted transcription factors
in other genomes that could be screened for sequence-specific binding
by PBM experiments. Because dozens of PBM experiments could
be done in parallel in a single day, this technology provides consider-
able cost and time savings over other methods, which can take
months to measure the effects of mutations for a large set of variant
DNA-protein interactions.

The effects of different concentrations of transcription factors,
protein cofactors, protein modifications, small molecule cofactors
such as metabolites, or various binding conditions could be measured
with PBMs. In vitro binding specifically by heterodimeric transcription
factors can be detected with a PBM approach36. Similarly, PBMs could
be used to distinguish the relative binding preferences of various whole
or partially fractionated cell lysates, such as from various cell types,
sampled at different time points or grown under different conditions.

Bioinformatic analysis of PBMs will provide more informative
data than mononucleotide position weight matrices, as nucleotides
of transcription-factor binding sites frequently do not act indepen-
dently in binding by transcription factors37–39. Moreover, the vast data
sets that would be generated on DNA-protein interactions by PBMs
could yield the necessary data required to determine what predictive
rules may exist that describe DNA recognition by sequence-specific
transcription factors40.

Finally, only a small handful of sequence-specific transcription
factors have been characterized well enough to know many of the
sequences that the transcription factors can and, just as importantly,
cannot bind. More complete transcription-factor binding-site data will
ultimately permit more accurate prediction of functional cis regulatory
elements in the vast stretches of noncoding sequence in the genomes
of both model organisms and the human genome than has been
possible thus far41.

METHODS
Synthesis of DNA microarrays. We synthesized microarrays spotted with

double-stranded DNAs containing either positive or negative control binding

sites for Rpn4 for the PBM proof-of-principle experiments with CBP-FLAG-

Rpn4 essentially as described previously11. Exact methods and oligonucleotides

are described in Supplementary Methods online. We synthesized whole-

genome yeast intergenic microarrays essentially as described previously3.

Expression and purification of yeast transcription factors. We created

N-terminal CBP-FLAG fusions of RPN4 by cloning RPN4 into the pCAL-n-

FLAG vector (Stratagene). We verified the full-length sequences of the resulting

CBP-FLAG-RPN4 fusion constructs to ensure that no mutations had been

introduced during cloning. We transformed BL21-Gold(DE3)pLysS E. coli

(Stratagene) with the verified CBP-FLAG-RPN4 constructs and expressed them

by inoculating Luria-Bertani medium containing 50 mM zinc acetate and

50 mg ml–1 carbenicillin with an overnight culture (1:20 dilution), growing at

30 1C to an A600 of 0.3–0.5, and then inducing it with 1 mM isopropyl-b-D-

thiogalactopyranoside to an A600 of 1.0. We stored cell pellets at –80 1C and
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then thawed them on ice and lysed them with CelLyticB Bacterial Cell Lysis

Extraction Reagent (Sigma) containing 50 mM zinc acetate. We purified the

CBP-FLAG fusion proteins with anti-FLAG M2 affinity gel (Sigma) and then

quantified them. We verified sequence-specific binding of the purified Rpn4

fusion protein with EMSAs using probes containing the consensus PACE site17

(data not shown). Purified proteins were stored at –80 1C until use.

We produced N-terminal GST-His6 fusions of Rap1, Abf1 and Mig1

essentially as described previously42. We expressed the fusion proteins in

S. cerevisiae, purified them individually with glutathione beads (Amersham),

concentrated using Microcon YM-30 filters (Millipore), and then quantified

them. Purified proteins were stored at �80 1C until use.

PBM experiments. We carried out PBM experiments and SybrGreen I staining

of the DNA microarrays in triplicate, essentially as described previously11. We

thawed previously purified proteins on ice and diluted them to a final

concentration of 20 nM in a 100-ml protein-binding reaction mixture consisting

of phosphate-buffered saline (PBS), 50 mM zinc acetate, 2% (w/v) nonfat dried

milk, 51.3 ng ml–1 salmon testes DNA (Sigma) and 0.2 mg ml–1 bovine serum

albumin. We preincubated this protein-binding reaction for 1 h at room

temperature. We pre-wet microarrays in PBS and 0.01% Triton X-100 and then

blocked them with 2% milk in PBS for 1 h. We washed the blocked microarrays

once with PBS and 0.1% Tween 20, and then once with PBS, 50 mM zinc acetate

and 0.01% Triton X-100. We then applied the preincubated protein-binding

mixtures to the microarrays and allowed binding to proceed for 1 h. We then

washed the microarrays once with PBS, 50 mM zinc acetate and 0.5% Tween 20,

and then once with PBS, 50 mM zinc acetate and 0.01% Triton X-100. We

diluted Alexa 488–conjugated rabbit polyclonal antibody to GST (Molecular

Probes) or Cy3-conjugated mouse M2 monoclonal antibody to FLAG (Sigma)

in PBS and 50 mM zinc acetate containing 2% milk, preincubated them for at

least 30 min and applied to the microarray. After incubation for 1 h, we washed

the microarrays three times with PBS, 50 mM zinc acetate and 0.05% Tween 20

and once with PBS and 50 mM zinc acetate. The slides were then spun dry and

stored in a closed box until being scanned.

Microarray imaging and data analysis. All whole-genome yeast intergenic

microarrays were from the same print run, so as to minimize variation. We

typically scanned (GSI Lumonics ScanArray 4000 or ScanArray 5000) the

labeled PBMs and the SybrGreen I–stained microarrays at three to six different

laser power intensities or photomultiplier tube gain settings per microarray;

this allowed us to capture signal intensities for even very low signal intensity

spots and ensured that we captured subsaturation signal intensities for each of

the spots on the microarray11. We scanned microarrays using appropriate lasers

and filter sets, essentially as described previously11.

We quantified microarray TIF images using GenePix Pro version 3.0 soft-

ware (Axon Instruments). We calculated background-subtracted median inten-

sities using the median local background. We used masliner (MicroArray Spot

LINEar Regression) software to calculate the relative signal intensities over the

full series of laser power (or photomultiplier tube gain) setting scans in a

semiautomated fashion. masliner combines the linear ranges of multiple scans

from different scanner sensitivity settings onto an extended linear scale11,43.

This resulted in final PBMs and SybrGreen I–stained microarrays having

fluorescence intensities that spanned five to six orders of magnitude.

We filtered the resulting microarray data with a number of quality control

criteria so that only data from high-quality spots were retained. First, for each

of the triplicate microarrays, we removed data corresponding to any flagged

spots (i.e., spots that had dust flecks, etc.). We normalized data from each of the

triplicate microarrays according to total signal intensity, so that the average spot

intensity was the same for all three slides. Then we separated the data in each

individual slide into sectors, according to their local region on the slide; for the

whole-genome yeast intergenic arrays, we separated the spots into the 32

subgrids of the printed microarray. We then normalized the data again so that

the mean spot intensity was the same over all the sectors; this served to

normalize for any region-specific inhomogeneities in the background and also

binding and labeling reactions. Any spots with s.d./median values 42 (i.e.,

spots with highly variable pixel signal intensities) were filtered out. We averaged

the background-subtracted, normalized signal intensities for all spots with

reliable data in at least two of the three replicate microarray, calculated the

means and standard deviations and filtered out any spots with a coefficient of

variation (s.d./mean)41 over the replicate microarrays. We treated the Sybr-

Green I microarray data exactly the same way, except that we also filtered out

any spots that had o50% pixels with signal intensities 42 s.d. beyond the

median background signal intensity, as these spots presumably did not have

enough DNA present to allow accurate quantification of signal intensities. For

the Rap1, Abf1 and Mig1 PBM datasets, B91–96% of 6,723 unique spots

passed these criteria. A detailed description of these quality control filters is

available in Supplementary Methods online.

We carried out subsequent analyses with Perl scripts written by M.F.B. We

calculated the fractional signal intensity of each spot relative to the total signal

intensity on the microarray. We then calculated the log2 ratio of the mean PBM

signal intensity divided by the mean SybrGreen I signal intensity and created a

scatter plot of the log ratio versus the spots’ SybrGreen I signal intensities.

Although we expect that the log ratio should be independent of DNA

concentration, we found that higher DNA concentrations, as determined by

higher SybrGreen I signal intensities, seem to bind proportionately less protein.

To restore the independence of log ratio and SybrGreen I intensity, we fit the

scatter plot with a locally weighted least squares regression using the LOWESS

function44 of the R statistics package (smoothing parameter ¼ 0.5). We

subtracted the value of the regression at each spot from its log ratio, yielding

a modified log ratio that is independent of DNA concentration. We then plotted

the distribution of all log ratios as a histogram (bin size ¼ 0.05), which for the

distributions of Rap1, Abf1 and Mig1 resembled a Gaussian distribution with a

heavy tail. We determined the mode of the distribution by searching for the

window of nine bins with the highest number of spots and taking the middle

bin. We then reflected all values less than the mode and fit these values to a

Gaussian function using the Mathematica software package (Wolfram

Research). This gave the mean and standard deviation of the distribution,

and the mean was used to adjust the log ratios so that the peak was centered on

zero. We calculated a P value for each individual spot based on the magnitude of

its log ratio relative to the standard deviation of the Gaussian distribution, using

the normal error integral. To correct for multiple hypothesis testing, we adjusted

all individual P values to a modified significance level using the Modified

Bonferroni Method38,45. For significance testing of the PBM data, we used an

initial a ¼ 0.001, which corresponded to a¢ equal to B1.5 � 10–7 for the

highest-ranking test case, as we were typically evaluating B6,400 unique spots.

DNA motif finding and group specificity score. We used BioProspector16 to

analyze sequences for over-represented DNA sequence motifs. We chose

BioProspector over other available motif-finding programs because it accepted

the largest number of input sequences in construction of the transcription-

factor binding-site motifs. To search for motifs that were over-represented in

PBM experiments, we used all sequences from spots that had a Bonferroni-

corrected P value r0.001 as input. To search for motifs that were over-

represented in the intergenic regions bound in ChIP-chip experiments, we

input either all sequences with a P value r0.001 (ref. 6) or all sequences with a

median percentile rank Z0.92 in the six replicate experiments and o0.92 in

controls5. For each set of input sequences, we carried out separate searches at

each width between 6 and 18 nucleotides to identify the highest-scoring motifs

at each width. We chose the single motif with the highest group specificity

score17 to be the most significant, using the set of all sequences spotted on the

microarray as the background. The group specificity score indicates the degree

to which the property containing the sequence motif is specific to the input set

of intergenic regions, as determined from the most significantly bound spots on

the microarrays, with a smaller group specificity score indicating that the motif

is more specific to the input set of spots (i.e., the spots beyond a P-value

threshold of 0.001 in the PBM data or the ChIP-chip data from Lee et al.6; the

spots at or beyond the 92nd percentile rank in the ChIP-chip data from Lieb

et al.5; or the randomly selected spots in the computational random controls).

To assess the statistical significance of the DNA sequence motifs resulting from

analysis of the PBM experiments, we carried out a set of computational

negative control experiments in which we carried out identical motif searches

on ten individual sets of randomly selected spots from the yeast intergenic

microarrays for each transcription factor, with each random set containing the

same number of sequences as the original input sets for each of the Rap1, Abf1

and Mig1 PBM data sets. The range of group specificity scores for the Rap1
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control sets was 2.2 � 10–5 to 3.5 � 10–11, with a geometric mean equal to

8.4 � 10–8; the range of group specificity scores for the Abf1 control sets was

5.6 � 10–3 to 1.3 � 10–6, with a geometric mean equal to 3.7 � 10–5; and the

range of group specificity scores for the Mig1 control sets was 4.8 � 10–3 to

1.8 � 10–5, with a geometric mean equal to 4.8 � 10–4. Thus, the Rap1, Abf1

and Mig1 motifs identified from the intergenic regions identified as bound in

PBM experiments had highly significant group specificity scores as compared

with the random controls. We also determined the Pearson correlation

coefficients of the motifs using CompareACE17.

To identify motifs potentially responsible for inhibition of binding or for

recruitment, we carried out motif finding using BioProspector16 and MDscan46

on intergenic regions enriched only on PBMs or in ChIP-chip experiments,

respectively, for each transcription factor. To score such potential secondary

motifs, we computed group specificity scores to select those motifs enriched in

intergenic regions bound only on PBMs or only in ChIP-chip relative to those

bound in both types of assays. We assessed the significance of a group

specificity score by comparison with scores returned from motif finding on

random data sets, where the number of input sequences was the same. For

identifying potential motifs under the recruitment model, we searched spots

bound at P values 40.05 in PBMs and o0.05 in ChIP-chip. We selected

intergenic regions for searches for motifs that might allow inhibition of

transcription factor binding, if the intergenic regions had Bonferroni-corrected

P values o0.001 in PBMs and 40.05 in ChIP-chip. We searched both the

sequences spotted on the array and an additional 500 bp of flanking sequence

on both sides of the spotted PCR amplicon, in case the ChIP-chip positives

reflected transcription-factor binding to a site near the spotted intergenic

sequence that then hybridized because of complementary flanking sequence

due to the sonication protocol. After searching for candidate motifs, we used a

CompareACE17 cutoff of 0.7 both for merging similar discovered motifs and

for identifying matches to previously known motifs.

EMSAs. We carried out EMSAs essentially in accordance with manufacturer’s

protocols for the LightShift Chemiluminescent EMSA Kit (Pierce). We synthe-

sized complementary biotinylated DNA oligonucleotides, each 45 bp in length

(Integrated DNA Technologies) such that they contained the predicted Rap1

binding site, flanked by its native sequence from the given intergenic region. We

also synthesized a positive control probe containing a known Rap1 binding site

and a negative control probe lacking a Rap1 binding site and used them in

EMSAs. A list of the oligonucleotide sequences and detailed protocols used in

constructing the EMSA probes is available in Supplementary Methods online.

Analysis of functional category enrichment. Analysis of a group of genes for

enrichment for a particular functional annotation has previously been used to

analyze sets of yeast genes that comprise particular gene expression clusters22.

We used the web-based tool FunSpec for the statistical evaluation of the groups

of genes downstream of the ‘bound’ intergenic regions, for groups of over-

represented gene and protein categories with respect to existing functional

category information from a number of public and published databases47. Like

the group specificity score described above17, FunSpec uses the hypergeometric

distribution to calculate a P value for functional category enrichment17,22.

Analysis of cross-species sequence conservation. We searched for conserved

putative binding sites in the five sequenced genomes of the yeast sensu stricto

clade: S. cerevisiae, S. mikatae, S. kudriavzevii, S. bayanus and S. paradoxus. Our

searches were limited to the aligned regions in the MultiZ multiple sequence

alignment downloaded from the University of California Santa Cruz Genome

Browser. Regions aligned between S. cerevisiae and each of the other four

species were separately mapped onto the S. cerevisiae chromosomal coordi-

nates. We used ScanACE17 to search all five genomes for sequence matches

within two standard deviations of the motif identified from PBM experiments.

In our first approach, a site was considered conserved if its ScanACE score was

within two standard deviations of the motif average21 that we determined from

the set of regions passing a P-value threshold of 0.001 in PBMs and if its

relative position in each genome differed by no more than 15 bp. In our second

approach, a site was considered exactly conserved if it satisfied the previous

conditions and was identical in all five species at each of the informative

positions. Here, for ‘exact’ conservation we used a very strict measure of

sequence conservation, in which we required 100% sequence identity at all

informative nucleotide positions of the binding site (9, 9 or 12 positions for

Mig1, Abf1 or Rap1, respectively) in all five species. We defined informative

positions to be those with an information content of greater than 0.5 bits in the

PBM-derived motif. Analyses were done with Perl scripts written by M.F.B.

Analysis of correlation of target genes with gene expression data. We

normalized gene expression data from 643 yeast expression microarray experi-

ments across a variety of culture conditions48 so that the log2 of the relative

change in each microarray had a mean of 0 and standard deviation of 1. To

identify conditions under which a particular transcription factor either acti-

vated or failed to repress transcription, we calculated the fraction of putative

target ORFs whose expression increased by a factor of at least 2.5 for each

individual condition. Similarly, to find conditions in which a transcription

factor acted as a repressor or failed to activate transcription, we calculated the

fraction of putative target ORFs whose expression decreased by a factor of at

least 2.5 for each condition. We assessed significance by comparison with 100

sets of randomized ORFs, matched in size to the lists of target genes for each

transcription factor. Each condition was assigned a score equal to the

percentage of genes in each set that was upregulated, and separately down-

regulated, in the corresponding gene expression data set. We used the single

highest score over all conditions for all random sets as our significance

threshold. Any condition for which a larger fraction of predicted target genes

was upregulated or downregulated was considered significant with P o 0.01.

For this analysis, we considered ORFs to be candidate target genes if they were

no more than 500 bp downstream of an intergenic region bound in PBMs at a

P-value threshold of 0.001.

Analysis of candidate target genes’ sequence homologies. We used the

BLASTP search tool at the Saccharomyces Genome Database web server to

analyze the sequence homologies of candidate target genes in S. cerevisiae, which

resulted in WU-BLAST2 E values, and also in all organisms at the National

Center for Biotechnology Information, which resulted in BLAST E values.

URLs. Additional data are available from http://the_brain.bwh.harvard.edu/

publications.html.

Note: Supplementary information is available on the Nature Genetics website.
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