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 Supplemental Experimental Procedures 

Analyzing the protein binding microarray (PBM) data 

The PBM experiments yielded a fluorescence value for each spot on the array. The fifty 

sequences with highest fluorescence from each array design (100 sequences total) were 

collectively analyzed using MultiFinder (Huber & Bulyk, 2006). This program, which 

integrates four different previously developed motif discovery algorithms, can identify 

multiple position weight matrices (PWMs) and has the user-specified option (which we 

employed here) to output the single PWM with the most significant group specificity 

score (which here corresponds to the PWM that is most specific to the input sequences as 

compared to the rest of the sequences on the arrays).  Within these 100 sequences, 

MultiFinder identified a 21 bp over-represented motif. The resulting PWM described the 

binding specificity by assigning a probability for each base at each of the 21 nucleotide 

positions. 

 

To identify LuxR binding sites within known directly regulated promoters from V. 

harveyi, we used this PBM-derived PWM in conjunction with MotifLocator (Thijs et al., 

2001), which scans for potential binding sites. MotifLocator uses as inputs the PWM, a 

background model of the genome, a chosen threshold probability score, and a list of 

target sequences, and then outputs a list of the target sequences that are above the input 

threshold score. Using MotifLocator, we analyzed both the known LuxR-regulated 

promoters and the PBM sequences using a variety of thresholds. We found that high 

threshold probabilities yielded too few expected hits, while low thresholds resulted in 

high false positive rates. Modifying the PWM by reducing it to a 20 bp sequence and 
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enforcing symmetry between the visibly important 5 bp half-sites did not significantly 

improve overall performance. We concluded that a more sophisticated approach was 

needed to identify the true LuxR binding sites, and therefore applied a machine learning 

algorithm called a Support Vector Machine (SVM) (Bishop, 2006). 

 

Refining the binding-site model 

SVMs are a family of machine learning algorithms that map data sets into higher 

dimensions to separate the data points into classes. This form of supervised learning is 

well-studied and software implementations are publicly available. The first step in 

training a classification SVM model is to define positive and negative examples. In our 

case, these examples were obtained from the PBMs. Specifically, we used the PWM from 

MultiFinder with a low enough threshold probability (85% confidence) to return at least 

one 21 bp subsequence for each LuxR-bound 60-mer sequence on the array. We 

considered LuxR-bound sequences to be those whose normalized fluorescence was 

greater than 20,000 fluorescence units, closely corresponding to the top 50 sequences 

from each array. To be conservative, we considered as unbound sequences those whose 

fluorescence was below a cutoff of 7,500 fluorescence units.  This cutoff was chosen to 

optimize the performance of the SVM on its own data, using leave-on-out validation. For 

each of the bound array sequences, the highest scoring 21 bp subsequence was taken as a 

positive example for the SVM.  As negative examples, we used all above-threshold 21 bp 

subsequences in each unbound sequence from the array. Together, the two PBM 

experiments yielded 131 positive examples and 1135 negative examples after reverse 

complementation. These positive and negative examples were converted into 42 digit 
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binary sequences in which each set of 2 digits represented one base (A = 00, C = 01, G = 

10, T = 11).  During training, the SVM software mapped the data into higher dimensions 

using a pre-determined kernel function. In the biological context, these higher dimensions 

represented specific co-dependencies between different positions within the motif, which 

are not considered in the PWM. We combined two SVM algorithms and averaged their 

scores to make predictions. This combination included the publicly available SVM light 

program (Joachims, 1999) and NEC’s proprietary MiLDe software (NEC Laboratories, 

Inc.).  After mapping the data into higher dimensions, the SVM algorithm found the 

hyperplane that best separated the positive from the negative examples. Distance from the 

hyperplane was used as a score to predict whether new examples were positive or 

negative. In the SVM light program, we used a 4th-order polynomial kernel for mapping, 

which allows co-dependencies of up to 4 bases. The use of even higher-order 

polynomials did not improve separation of the positive and negative examples. MiLDe 

allowed use of a radial basis kernel, which allowed us to prioritize reducing the number 

of false positives.  Both SVM light and MiLDe have internal performance metrics based 

on the leave-one-out principle, which trains the model with all data points except one, 

and then tests the model on the example that was left out. This process was repeated on 

every data point to determine the precision and recall of the model (see Results). 

 

Scanning and scoring promoter sequences 

The first step in scanning promoter sequences for putative LuxR-binding sites was the 

same as the first step of SVM training. We scanned the promoter sequences using the 

PWM with the same threshold (>85%) and identified the above-threshold 21 bp 
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subsequences, which were then converted into binary form. The binary sequences were 

scored by the trained SVMs and the average score for each 21 bp subsequence was 

compiled. Sequences with scores greater than 0 were considered true binding sites, while 

scores less than 0 indicated false positives. To perform the in silico mutagenesis of the 

qrr4 and qrgB LuxR-binding sites, we calculated the average SVM scores for the 

appropriately modified 21 bp sequences. 

 

Identification of novel genomic targets 

We scanned the V. harveyi genome for putative binding sites using our dual-layered 

(PWM/SVM) scoring system. Although we expect a large fraction of the sites with 

positive SVM scores to bind LuxR, we focused on sites located within 300 bp of a 

putative gene. The V. harveyi genome has been computationally annotated for open 

reading frames (ORFs) by the sequencing center at Washington University using the 

program GeneMarkHMM (Lukashin & Borodovsky, 1998).  We used this information to 

compile a list of approximately 200 candidate LuxR binding sites, on both V. harveyi 

chromosomes. To enrich for functional sites, we evaluated conservation of the promoter 

regions, as well as the downstream ORFs themselves, with respect to V. harveyi’s closest 

sequenced relative, V. parahaemolyticus. By eliminating candidate binding sites for 

which the respective promoter regions were less than 80% conserved, we shortened the 

candidate gene list to approximately 40 genes. With input from an energetic model 

(Kinney et al., 2007), we picked five of the highest-scoring of these 40 sequences to test 

for LuxR-dependent regulation. 
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Table S1: 
Model    True positives  False positives 
PWM (85%)   98.86%  2.495% 
PWM (90%)   64.77%  0.068% 
PWM (95%)   7.95%   0.002% 
PWM (85%) / NEC SVM 98.88%  0.049% 
PWM (85%) / SVM Light 96.45%  0.140% 
    
True positives =  % of true positives predicted to be positive 
False positives = % of true negatives predicted to be positive 
 
 
Table S2: Oligonucleotides used for fluorescence anisotropy 
Oligonucleotide name  Sequence 
Consensus    actga TATTGATAAATTTATCAATAA tgact 
Negative control   actga CTGACTGACTGACTGACTGAC tgact 
  
qrgB WT   tgttta TATTGAGTTCACAATCAATAC cgatca 
qrgB A2C   tgttta TCTTGAGTTCACAATCAATAC cgatca 
qrgB A6C   tgttta TATTGCGTTCACAATCAATAC cgatca 
qrgB A17C   tgttta TATTGAGTTCACAATCCATAC cgatca 
qrgB A2CA17C  tgttta TCTTGAGTTCACAATCCATAC cgatca 
  
qrr4 WT    cattt TTCTGATAAATGTATTAGTAG caatg  
qrr4 A6C    cattt TTCTGCTAAATGTATTAGTAG caatg  
qrr4 T15C    cattt TTCTGATAAATGTACTAGTAG caatg  
qrr4 A17C    cattt TTCTGATAAATGTATTCGTAG caatg  
qrr4 A6CA17C   cattt TTCTGCTAAATGTATTCGTAG caatg  
  
VP0057/8    aacat TACTGATAAATTAGATATTTA tggct  
VP0944/5    tagag TTAGTATCAATTTAATCAATA agata  
VPA0197/8    taagg TAAATAATTATTTTAACAATA attaa  
VPA0226/7    accaa AATTGATAAAATGAATAATTA gatat  
VPA0649    attcc TTATTTACCAATTTATAAACT atgaa  
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